super resolution imaging reveals principles of physical
play

Super-resolution imaging reveals principles of physical chromatin - PowerPoint PPT Presentation

! Super-resolution imaging reveals principles of physical chromatin folding in eukaryotes Frdric Bantignies Chromosome Conformation Symposium - Toulouse 04/12/2019 Inside cell nucleus, the genome is highly compacted and folded as a


  1. ! Super-resolution imaging reveals principles of physical chromatin folding in eukaryotes Frédéric Bantignies Chromosome Conformation Symposium - Toulouse 04/12/2019 ¡

  2. Inside cell nucleus, the genome is highly compacted and folded as a chromatin fiber ̴ 10 µ m ̴ 2 meters of DNA Rosa ¡& ¡Shaw, ¡2013 ¡

  3. The different level of genome organization 1953 ¡ 1997 ¡ ongoing ¡ 2005 ¡ Mar1-­‑Renom ¡and ¡Mirny, ¡ PLoSComputa+onal ¡Biology ¡2011 ¡

  4. Chromosome Conformation Capture (Hi-C) Lieberman ¡ et ¡al , ¡2009 ¡(Hi-­‑C) ¡ Rao ¡ et ¡al , ¡2014 ¡(in ¡situ ¡Hi-­‑C) ¡ Genera1on ¡of ¡contact ¡maps ¡ between ¡all ¡interac1ng ¡fragments ¡ Chroma1n ¡crosslink ¡ ¡ Contact ¡density ¡map ¡ inside ¡nucleus ¡ Mar1-­‑Renom ¡and ¡Mirny, ¡ PLoSComputa+onal ¡Biology ¡2011 ¡

  5. Hi-C maps represent three main levels of genome folding Topologically Associating Domains Hi-C Single ? cell Ø TADs represent genomic region of highly interacting chromatin with few interactions spanning their borders Adapted ¡from ¡Szabo, ¡Ban1gnies, ¡Cavalli, ¡ Science ¡Advances ¡2019 ¡ and ¡ Mota-­‑Gomez, ¡Lupianez, ¡ Genes ¡2019 ¡ ¡

  6. TADs are a conserved genomic feature with species specificities Fly Mammals vs. • Median size: ~ ¡ 100 kb • Median size: ~ ¡ 900 kb • Coincide well with the alternation of • Presence of corner peaks (structural architectural loops) repressed and active chromatin marks • Presence of Enhancer-Promoter loop (functional loops) Sexton et al. , Cell 2012 Nora et al. , Nature 2012 Dixon et al. , Nature 2012 Hou et al. , Molecular Cell 2012 Adapted from Szabo, Bantignies, Cavalli, Science Advances 2019

  7. TADs are considered as functional genomic units Fly Mammals 45° rotation • Median size: ~ ¡ 100 kb • Median size: ~ ¡ 900 kb • Presence of corner peaks (structural architectural loops) • Coincide well with the alternation of • Presence of Enhancer-Promoter loop (functional loops) repressed and active chromatin marks (Sexton et al, 2012) • Genes within TADs are co-regulated (Nora et al , 2012; Zhan et al , 2017) • Enhancer/promoter contacts are restricted within TADs (Symmons et al , 2014; Bonev et al , 2017) • Disruption of boundary leads to ectopic gene expression (Lupianez et al , 2015; Hniz et al , 2016; Rodriguez- Carballo et al , 2017)

  8. TADs are considered as functional genomic units Fly Mammals 45° rotation Whether TADs structure is compatible with their functional role ? Indeed, they can represent the manifestation of average interactions from large cell populations and therefore we need to understand their structure before to claim that they represent functional domains

  9. We undertook a structural approach combining Hi-C / Oligopaint technology / super-resolution microscopy in Drosophila

  10. The Oligopaint 3D-FISH technology Ø Represents a new generation of FISH probes entirely derived from synthetic DNA oligonucleotides Ø Production of ssDNA oligo pools able to recognize any portion of the genome in various organisms, from 10 kb to several Mb, avoiding repetitive sequences Chroma1n ¡fiber ¡ Beliveau et al., Nature communications 2015 ; Beliveau et al ., PNAS 2018 https://oligopaints.hms.harvard.edu

  11. Super-Resolution Microscopy (SRM) Axial resolution (estimated) 100 nm 50-80 nm 30 nm Schermelleh, Heintzmann and Leonhardt, J.cell.Biol. 2010

  12. In Drosophila , TADs corresponds to the alternation of chromatin states Ø Active chromatin: H3K4me3/H3K36me3/H3K27ac/gene dense/ubiquitously active Ø Repressed chromatin: H3K27me3/Polycomb proteins or Void chromatin/gene poor/specific activation during developmental programs Adapted from Szabo, Bantignies, Cavalli, Science Advances 2019

  13. 3D-SIM super-resolution imaging reveals chromatin nano-structures or nanocompartments Oligopaint probe covering 3 Mb (~12 fluorescent oligos/kb)

  14. 3D-SIM super-resolution imaging reveals chromatin nano-structures or nanocompartments Oligopaint probe covering 3 Mb (~12 fluorescent oligos/kb) Conventional Wide Field

  15. 3D-SIM super-resolution imaging reveals chromatin nano-structures or nanocompartments Oligopaint probe covering 3 Mb (~12 fluorescent oligos/kb) Conventional Wide Field 3D-SIM

  16. 3D-SIM super-resolution imaging reveals chromatin nano-structures or nanocompartments Oligopaint probe covering 3 Mb (~12 fluorescent oligos/kb) Conventional Wide Field 3D-SIM 1 µ m

  17. Dual labeling of the chromatin fiber

  18. Local chromatin compaction reflects the chromatin state Repressed TAD

  19. Local chromatin compaction reflects the chromatin state Repressed TAD Active TAD

  20. Local chromatin compaction reflects the chromatin state ** Repressed TAD Active TAD

  21. Investigating TAD structures in vivo

  22. Investigating TAD structures in vivo Equidistant dot probes 1 2 3 1 µ m

  23. Repressed TADs spatially confine the chromatin fiber Equidistant dot probes 1 2 3 1 µ m

  24. Repressed TADs spatially confine the chromatin fiber Equidistant dot probes 1 2 3 1 µ m

  25. Repressed TADs form discrete 3D chromosomal units or nanocompartments

  26. Repressed TADs form discrete 3D chromosomal units or nanocompartments Oligopaint probes

  27. Repressed TADs form discrete 3D chromosomal units or nanocompartments Oligopaint probes 1 µ m

  28. Repressed TADs form discrete 3D chromosomal units or nanocompartments Oligopaint probes 1 µ m

  29. Repressed TADs form discrete 3D chromosomal units or nanocompartments Oligopaint probes 1 µ m

  30. Repressed TADs form discrete 3D chromosomal units or nanocompartments Oligopaint probes 1 µ m

  31. Repressed TADs form discrete 3D chromosomal units or nanocompartments Oligopaint probes TAD 1 + TAD 2 - No contacts in ~70% of the cells - Overlap fraction < 0.1 in ~85% of the cells 1 µ m

  32. Polymer modeling of the chromatin fiber Self-avoiding and self-interacting polymer model of the region of interest Interaction 2 kb beads Optimize interaction potentials Compare with Simulate ensemble of Simulated experimental different configurations contact probability Hi-C map map Adapted from Giorgetti et al , Cell 2014

  33. Polymer modeling is consistent with the physical TAD-based chromatin compartmentalization Simulated ¡ Experimental ¡ Daniel Jost

  34. Polymer modeling is consistent with the physical TAD-based chromatin compartmentalization 1 2 3 TAD 1 TAD 2 Daniel Jost

  35. Polymer modeling is consistent with the physical TAD-based chromatin compartmentalization 1 2 3 TAD 1 TAD 2 Daniel Jost

  36. Polymer modeling is consistent with the physical TAD-based chromatin compartmentalization 1 2 3 TAD 1 TAD 2 Daniel Jost

  37. What about shorter inter versus intra -TAD distances? 75 % of the cells

  38. What about shorter inter versus intra -TAD distances? 75 % of the cells 25 %

  39. The relative TAD positioning can explain shorter inter versus intra -TAD distances 75 % of the cells 25 %

  40. The relative TAD positioning can explain shorter inter versus intra -TAD distances 75 % of the cells 25 %

  41. Organization of the chromatin fiber in Drosophila interphase nuclei Nanocompartments/ ¡ repressed ¡TADs ¡ (gene ¡poor ¡region/ ¡ Developmental ¡genes/ ¡ Tissue ¡specific ¡expression) ¡ Ac1ve/decondensed ¡ ¡ chroma1n ¡ (gene ¡dense ¡region/ ¡ ubiquitously ¡expressed) ¡ Szabo ¡ et ¡al., ¡ Science ¡Advances ¡2018 ¡

  42. CAVALLI lab Giacomo Cavalli Quentin Szabo Thierry Cheutin Anne-Marie Martinez Bernd Schuettengruber Laurianne Fritsch Giorgio L. Papadopoulos Boyan Bonev Satish Sati Yuki Ogiyama Sandrine Denaud Vincent Loubière Ivana Jerkovic Axelle Donjon NOLLMANN lab Centre de Biochimie Structurale Alumni CNRS Univ Montpellier Marcelo Nollmann Virginie Roure Daniel Jost Diego Cattoni Benjamin Leblanc TIMCS-IMAG CNRS Univ Grenoble Alpes Julian Gurgo Itys Comet Fillipo Ciabrelli Jia-Ming Chang Amos Tanay Caroline Jacquier National Chengchi University Weizmann Institute Israël Tom Sexton Ting Wu Institut de Génétique et de Biologie Harvard Medical School Moléculaire et Cellulaire Boston CNRS INSERM Univ Strasbourg BioCampus BioCampus Drosophila facility Montpellier Ressources Imagerie facility Julio Mateos Langerak

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend