submodularity beyond submodular energies coupling edges
play

Submodularity beyond submodular energies: Coupling edges in graph - PowerPoint PPT Presentation

Graph Cuts Cooperative Cuts Optimization Applications Submodularity beyond submodular energies: Coupling edges in graph cuts Stefanie Jegelka and Jeff Bilmes Max Planck Institute for Intelligent Systems T ubingen, Germany University of


  1. Graph Cuts Cooperative Cuts Optimization Applications Submodularity beyond submodular energies: Coupling edges in graph cuts Stefanie Jegelka and Jeff Bilmes Max Planck Institute for Intelligent Systems T¨ ubingen, Germany University of Washington Seattle, USA 1 / 18

  2. Graph Cuts Cooperative Cuts Optimization Applications local pairwise random fields . . . 2 / 18

  3. Graph Cuts Cooperative Cuts Optimization Applications 3 / 18

  4. Graph Cuts Cooperative Cuts Optimization Applications Random Walker Curvature reg. Graph Cut 3 / 18

  5. Graph Cuts Cooperative Cuts Optimization Applications Random Walker Curvature reg. Graph Cut 3 / 18

  6. Graph Cuts Cooperative Cuts Optimization Applications Markov Random Fields and Energies p ( x | z ) ∝ exp( − E Ψ ( x ; z )) s x ∗ = arg min MAP x E Ψ ( x ; z ) t 4 / 18

  7. Graph Cuts Cooperative Cuts Optimization Applications Markov Random Fields and Energies p ( x | z ) ∝ exp( − E Ψ ( x ; z )) s x ∗ = arg min MAP x E Ψ ( x ; z ) � � E ( x ; z ) = Ψ i ( x i ) + Ψ ij ( x i , x j ) i ( i , j ) ∈N t 4 / 18

  8. Graph Cuts Cooperative Cuts Optimization Applications Markov Random Fields and Energies p ( x | z ) ∝ exp( − E Ψ ( x ; z )) s x ∗ = arg min MAP x E Ψ ( x ; z ) � � E ( x ; z ) = Ψ i ( x i ) + Ψ ij ( x i , x j ) i ( i , j ) ∈N � � E ( x ; z ) = w e + w e t e ∈ Γ x ∩E t e ∈ Γ x ∩E n 4 / 18

  9. Graph Cuts Cooperative Cuts Optimization Applications Markov Random Fields and Energies p ( x | z ) ∝ exp( − E Ψ ( x ; z )) s x ∗ = arg min MAP x E Ψ ( x ; z ) 1 1 1 � � E ( x ; z ) = Ψ i ( x i ) + Ψ ij ( x i , x j ) 1 1 i ( i , j ) ∈N 1 � � E ( x ; z ) = w e + w e t e ∈ Γ x ∩E t e ∈ Γ x ∩E n 4 / 18

  10. Graph Cuts Cooperative Cuts Optimization Applications s 1 1 1 1 1 1 t 5 / 18

  11. Graph Cuts Cooperative Cuts Optimization Applications s 1 1 1 1 1 1 t 5 / 18

  12. Graph Cuts Cooperative Cuts Optimization Applications s 1 1 1 1 1 1 t 5 / 18

  13. Graph Cuts Cooperative Cuts Optimization Applications s 1 1 1 1 1 1 t Couple edges globally 5 / 18

  14. Graph Cuts Cooperative Cuts Optimization Applications Richer Cuts: Cooperative Cuts � E ( x ) = w ( e ) e ∈ Γ x s = w (Γ x ) 1 1 1 1 1 1 t 6 / 18

  15. Graph Cuts Cooperative Cuts Optimization Applications Richer Cuts: Cooperative Cuts � E ( x ) = w ( e ) e ∈ Γ x s = w (Γ x ) 1 1 1 E f ( x ) = f (Γ x ) 1 1 1 submodular function on edges t 6 / 18

  16. Graph Cuts Cooperative Cuts Optimization Applications Richer Cuts: Cooperative Cuts � E ( x ) = w ( e ) e ∈ Γ x s = w (Γ x ) 1 1 1 E f ( x ) = f (Γ x ) 1 1 1 submodular function on edges t non-submodular & global energy 6 / 18

  17. Graph Cuts Cooperative Cuts Optimization Applications Coupling via Submodularity t s 7 / 18

  18. Graph Cuts Cooperative Cuts Optimization Applications Coupling via Submodularity e e A A B B f ( A ∪ e ) − f ( A ) ≥ f ( A ∪ B ∪ e ) − f ( A ∪ B ) Graph Cuts: LHS = RHS “it does not matter which other edges are cut” t s 8 / 18

  19. Graph Cuts Cooperative Cuts Optimization Applications Coupling via Submodularity e e A A B B f ( A ∪ e ) − f ( A ) ≥ f ( A ∪ B ∪ e ) − f ( A ∪ B ) Graph Cuts: LHS = RHS “it does not matter which other edges are cut” t submodularity: s reward co-occurrence structure 8 / 18

  20. Graph Cuts Cooperative Cuts Optimization Applications Generality Special cases of cooperative cuts: labels features (robust) P n potentials s (Kohli et al. ’07,’09) ... label costs 1 1 1 (Delong et al. ’11) 1 1 boundary discrete versions of norm-based 1 cuts (Sinop & Grady ’07) t . . . 9 / 18

  21. Graph Cuts Cooperative Cuts Optimization Applications Optimization? 10 / 18

  22. Graph Cuts Cooperative Cuts Optimization Applications Optimization? ( s , t )-cut Γ ⊆ E with min cost f (Γ). Theorem Minimum Cooperative Cut is NP-hard. 10 / 18

  23. Graph Cuts Cooperative Cuts Optimization Applications Optimization Γ 0 = ∅ ; repeat compute upper bound ˆ f i ≥ f based on Γ i − 1 ; until convergence ; ˆ f i (Γ i − 1 ) = f (Γ i − 1 ) 11 / 18

  24. Graph Cuts Cooperative Cuts Optimization Applications Optimization Γ 0 = ∅ ; repeat compute upper bound ˆ f i ≥ f based on Γ i − 1 ; Γ i ∈ argmin { ˆ f i (Γ) | Γ a cut } ; // Min-cut! i = i + 1; until convergence ; ˆ f i (Γ i − 1 ) = f (Γ i − 1 ) 11 / 18

  25. Graph Cuts Cooperative Cuts Optimization Applications Optimization Γ 0 = ∅ ; repeat compute upper bound ˆ f i ≥ f based on Γ i − 1 ; Γ i ∈ argmin { ˆ f i (Γ) | Γ a cut } ; // Min-cut! i = i + 1; until convergence ; Worst-case approximation bound: | Γ ∗ | for ν = min e ∈ Γ ∗ ρ e ( E\ e ) 1+( | Γ ∗ |− 1) ν E f ( x ∗ ) ≤ E f ( x ) max e ∈ C ∗ f ( e ) 11 / 18

  26. Graph Cuts Cooperative Cuts Optimization Applications Image Segmentation Random Walker Curvature reg. Graph Cut 12 / 18

  27. Graph Cuts Cooperative Cuts Optimization Applications Image Segmentation Random Walker Curvature reg. Graph Cut prefer congruous boundaries 12 / 18

  28. Graph Cuts Cooperative Cuts Optimization Applications Selective Discount for Congruous Boundaries s � � E w ( x ) = w e + λ w e e ∈ Γ ∩E t e ∈ Γ ∩E n � f (Γ ∩ E n ) E f ( x ) = w e + λ e ∈ Γ ∩E t t 13 / 18

  29. Graph Cuts Cooperative Cuts Optimization Applications Selective Discount for Congruous Boundaries s � � E w ( x ) = w e + λ w e e ∈ Γ ∩E t e ∈ Γ ∩E n � f (Γ ∩ E n ) E f ( x ) = w e + λ e ∈ Γ ∩E t t discount for co-occurring similar edges no discount for dissimilar edges 13 / 18

  30. Graph Cuts Cooperative Cuts Optimization Applications Structured Discounts groups S i of edges � f (Γ) = i f i (Γ ∩ S i ) 150 100 50 0 0 100 200 300 400 14 / 18

  31. Graph Cuts Cooperative Cuts Optimization Applications Structured Discounts groups S i of edges � f (Γ) = i f i (Γ ∩ S i ) 150 100 50 0 0 100 200 300 400 14 / 18

  32. Graph Cuts Cooperative Cuts Optimization Applications Structured Discounts groups S i of edges � f (Γ) = i f i (Γ ∩ S i ) 150 100 50 0 0 100 200 300 400 14 / 18

  33. Graph Cuts Cooperative Cuts Optimization Applications Some Results: Shading Graph Cut CoopCut 7 . 39% 2 . 23% 7 . 65% 3 . 50% 15 / 18

  34. Graph Cuts Cooperative Cuts Optimization Applications Some Results: Shading gray color high-freq Graph Cut: no discount 14.03 3.41 2.56 CoopCut (1 group): discount 11.58 2.95 1.49 structured CoopCut (15 groups): 3.63 1.69 1.27 discount Graph Cut CoopCut 5 . 08% 0 . 64% 16 / 18

  35. Graph Cuts Cooperative Cuts Optimization Applications Shrinking bias � � 50 ψ i ( x i ) + λ w e GC twig 14 CoopC twig GC total e ∈ Γ x i 12 CoopC total 40 total error (%) twig error (%) 10 30 8 20 6 4 10 2 2.5 0 0 0 0.5 0.5 1 1 1.5 1.5 2 2 2.5 Graph Cut λ 17 / 18

  36. Graph Cuts Cooperative Cuts Optimization Applications Shrinking bias � � 50 ψ i ( x i ) + λ w e GC twig 14 CoopC twig GC total e ∈ Γ x i 12 CoopC total 40 total error (%) twig error (%) 10 30 8 20 6 4 10 2 2.5 0 0 0 0.5 0.5 1 1 1.5 1.5 2 2 2.5 Graph Cut λ 17 / 18

  37. Graph Cuts Cooperative Cuts Optimization Applications Shrinking bias � 50 ψ i ( x i ) + λ f (Γ x ) GC twig 14 CoopC twig GC total i 12 CoopC total 40 total error (%) twig error (%) CoopCut 10 30 8 20 6 4 10 2 2.5 0 0 0 0.5 0.5 1 1 1.5 1.5 2 2 2.5 Graph Cut λ 17 / 18

  38. Graph Cuts Cooperative Cuts Optimization Applications Shrinking bias � 50 ψ i ( x i ) + λ f (Γ x ) GC twig 14 CoopC twig GC total i 12 CoopC total 40 total error (%) twig error (%) CoopCut 10 30 8 20 6 4 10 2 2.5 0 0 0 0.5 0.5 1 1 1.5 1.5 2 2 2.5 Graph Cut λ 17 / 18

  39. Graph Cuts Cooperative Cuts Optimization Applications Summary: Coupling Edges in Graph Cuts global, non-submodular family of energies NP-hard, but . . . graph structure indirect submodularity → efficient approximation algorithm applications guide segmentations via edge coupling 18 / 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend