subduction zone simulations with rate and state friction
play

Subduction Zone Simulations with Rate-and-State Friction E. Pipping - PowerPoint PPT Presentation

References Subduction Zone Simulations with Rate-and-State Friction E. Pipping 1 , R. Kornhuber 1 , M. Rosenau 2 , O. Oncken 2 1 Mathematisches Institut, Freie Universitt Berlin, 2 Geologische Systeme: Lithosphrendynamik, GeoForschungsZentrum


  1. References Subduction Zone Simulations with Rate-and-State Friction E. Pipping 1 , R. Kornhuber 1 , M. Rosenau 2 , O. Oncken 2 1 Mathematisches Institut, Freie Universität Berlin, 2 Geologische Systeme: Lithosphärendynamik, GeoForschungsZentrum Potsdam 1st of July 2015 Subduction Zone Simulations with Rate-and-State Friction E. Pipping, R. Kornhuber, M. Rosenau, O. Oncken

  2. References Overview / motivation Setting: Single, pre-existing fault. Small deformations. No pore fluids, no temperature dependence. Subduction Zone Simulations with Rate-and-State Friction E. Pipping, R. Kornhuber, M. Rosenau, O. Oncken

  3. References Overview / motivation Setting: Single, pre-existing fault. Small deformations. No pore fluids, no temperature dependence. Aim: Simulate complete seismic cycles with rate-and-state friction. Fully dynamic, no quasistatic or quasidynamic approximation. Subduction Zone Simulations with Rate-and-State Friction E. Pipping, R. Kornhuber, M. Rosenau, O. Oncken

  4. References Overview / motivation Setting: Single, pre-existing fault. Small deformations. No pore fluids, no temperature dependence. Aim: Simulate complete seismic cycles with rate-and-state friction. Fully dynamic, no quasistatic or quasidynamic approximation. Approach: Rothe’s method (spatial discretisation: FEM) Subduction Zone Simulations with Rate-and-State Friction E. Pipping, R. Kornhuber, M. Rosenau, O. Oncken

  5. References Overview / motivation Setting: Single, pre-existing fault. Small deformations. No pore fluids, no temperature dependence. Aim: Simulate complete seismic cycles with rate-and-state friction. Fully dynamic, no quasistatic or quasidynamic approximation. Approach: Rothe’s method (spatial discretisation: FEM) time stepping scheme? explicit or semi-implicit fully implicit rate/state step size coupling restriction resolve coupling? Subduction Zone Simulations with Rate-and-State Friction E. Pipping, R. Kornhuber, M. Rosenau, O. Oncken

  6. References Overview / motivation Setting: Single, pre-existing fault. Small deformations. No pore fluids, no temperature dependence. Aim: Simulate complete seismic cycles with rate-and-state friction. Fully dynamic, no quasistatic or quasidynamic approximation. Approach: Rothe’s method (spatial discretisation: FEM) time stepping scheme? explicit or semi-implicit fully implicit rate/state step size coupling restriction less efficient resolve no approaches coupling? yes our approach Subduction Zone Simulations with Rate-and-State Friction E. Pipping, R. Kornhuber, M. Rosenau, O. Oncken

  7. References Rate-and-state friction Rate-and-state friction laws by Dieterich/Ruina (1983), � 1 − θ V ageing law µ ( V , α ) = µ ∗ + a log V + b log θ V ∗ ˙ L , θ ( θ, V ) = − θ V L log θ V V ∗ L slip law L � �� � α Subduction Zone Simulations with Rate-and-State Friction E. Pipping, R. Kornhuber, M. Rosenau, O. Oncken

  8. References Rate-and-state friction Rate-and-state friction laws by Dieterich/Ruina (1983), � 1 − θ V ageing law µ ( V , α ) = µ ∗ + a log V + b log θ V ∗ ˙ L , θ ( θ, V ) = − θ V L log θ V V ∗ L slip law L � �� � α � V � µ ∗ + b α �� = a log exp V ∗ a Subduction Zone Simulations with Rate-and-State Friction E. Pipping, R. Kornhuber, M. Rosenau, O. Oncken

  9. References Rate-and-state friction Rate-and-state friction laws by Dieterich/Ruina (1983), � 1 − θ V ageing law µ ( V , α ) = µ ∗ + a log V + b log θ V ∗ ˙ L , θ ( θ, V ) = − θ V L log θ V V ∗ L slip law L � �� � α � V � µ ∗ + b α �� = a log exp V ∗ a Regularisation by Rice/Ben-Zion (1996) � V � µ ∗ + b α �� ≈ a sinh − 1 exp ≥ 0 2 V ∗ a Subduction Zone Simulations with Rate-and-State Friction E. Pipping, R. Kornhuber, M. Rosenau, O. Oncken

  10. References Rate-and-state friction Rate-and-state friction laws by Dieterich/Ruina (1983), � 1 − θ V ageing law µ ( V , α ) = µ ∗ + a log V + b log θ V ∗ ˙ L , θ ( θ, V ) = − θ V L log θ V V ∗ L slip law L � �� � α � V � µ ∗ + b α �� = a log exp V ∗ a Regularisation by Rice/Ben-Zion (1996) � V � µ ∗ + b α �� ≈ a sinh − 1 exp ≥ 0 2 V ∗ a Another regularisation � V � ≈ µ ∗ + a log + 1 + b α V ∗ Subduction Zone Simulations with Rate-and-State Friction E. Pipping, R. Kornhuber, M. Rosenau, O. Oncken

  11. References Rate-and-state friction Rate-and-state friction laws by Dieterich/Ruina (1983), � 1 − θ V ageing law µ ( V , α ) = µ ∗ + a log V + b log θ V ∗ ˙ L , θ ( θ, V ) = − θ V L log θ V V ∗ L slip law L � �� � α � V � µ ∗ + b α �� = a log exp V ∗ a Regularisation by Rice/Ben-Zion (1996) � V � µ ∗ + b α �� ≈ a sinh − 1 exp ≥ 0 2 V ∗ a Another regularisation � V � ≈ µ ∗ + a log + 1 + b α V ∗ Common assumption: Constant normal stress Subduction Zone Simulations with Rate-and-State Friction E. Pipping, R. Kornhuber, M. Rosenau, O. Oncken

  12. References Prototypical one-body problem Γ D Ω Γ N Γ N Γ C σ ( u ) = B ε ( u ) + A ε (˙ u ) in Ω (linear viscoelasticity) ∇ · σ ( u ) + b = ρ ¨ in Ω (momentum balance) u u n = 0 ˙ on Γ C (bilateral contact) σ t = − λ ˙ u , | σ t | = λ | ˙ u | = | σ n | µ ( | ˙ u | , α ) + C on Γ C with λ = 0 for ˙ u = 0 on Γ N , D . . . α = ˙ ˙ α ( | ˙ u | , α ) on Γ C (family of ODEs) Subduction Zone Simulations with Rate-and-State Friction E. Pipping, R. Kornhuber, M. Rosenau, O. Oncken

  13. References Towards spatial discretisation: Weak formulation We get � � � � ρ ¨ u ( v − ˙ u ) + B ε (˙ u ): ε ( v − ˙ u ) + A ε ( u ): ε ( v − ˙ u ) + φ ( v , α ) Ω Ω Ω Γ C � ≥ φ (˙ u , α ) + ℓ ( v − ˙ u ) Γ C for every v ∈ H with H = { v ∈ H 1 (Ω) d : v = 0 on Γ D , v n = 0 on Γ C } or briefly 0 ∈ M ¨ u + C ˙ u + A u + ∂ Φ( · , α )(˙ u ) − ℓ ⊂ H ∗ and α = ˙ ˙ α ( | ˙ u | , α ) a.e. on Γ C Subduction Zone Simulations with Rate-and-State Friction E. Pipping, R. Kornhuber, M. Rosenau, O. Oncken

  14. References Implicit time discretisation Starting point: 0 ∈ M ¨ u + C ˙ u + A u + ∂ Φ( · , α )(˙ u ) − ℓ α = ˙ ˙ α ( | ˙ u | , α ) (S) Subduction Zone Simulations with Rate-and-State Friction E. Pipping, R. Kornhuber, M. Rosenau, O. Oncken

  15. References Implicit time discretisation Starting point: 0 ∈ M ¨ u + C ˙ u + A u + ∂ Φ( · , α )(˙ u ) − ℓ α = ˙ ˙ α ( | ˙ u | , α ) After collocation (rate), approximation of ˙ u on [ t n − 1 , t n ] (state): 0 ∈ M ¨ u n + C ˙ u n + A u n + ∂ Φ( · , α n )(˙ u n ) − ℓ n α = ˙ ˙ α ( | ˙ u n − λ | , α ) with ˙ u n − λ = λ ˙ u n − 1 + ( 1 − λ )˙ ( 0 ≤ λ < 1 ) u n (S) Subduction Zone Simulations with Rate-and-State Friction E. Pipping, R. Kornhuber, M. Rosenau, O. Oncken

  16. References Implicit time discretisation Starting point: 0 ∈ M ¨ u + C ˙ u + A u + ∂ Φ( · , α )(˙ u ) − ℓ α = ˙ ˙ α ( | ˙ u | , α ) After collocation (rate), approximation of ˙ u on [ t n − 1 , t n ] (state): 0 ∈ M ¨ u n + C ˙ u n + A u n + ∂ Φ( · , α n )(˙ u n ) − ℓ n α = ˙ ˙ α ( | ˙ u n − λ | , α ) with ˙ u n − λ = λ ˙ u n − 1 + ( 1 − λ )˙ ( 0 ≤ λ < 1 ) u n After time discretisation (rate), determining the flow operator (state) � λ M � τ M + C + τ 0 ∈ u n + ∂ Φ( · , α n )(˙ ˙ u n ) − ℓ n − . . . (R) A λ A α n = Ψ τ ( | ˙ u n − λ | , α n − 1 ) (S) Subduction Zone Simulations with Rate-and-State Friction E. Pipping, R. Kornhuber, M. Rosenau, O. Oncken

  17. References Implicit time discretisation Starting point: 0 ∈ M ¨ u + C ˙ u + A u + ∂ Φ( · , α )(˙ u ) − ℓ α = ˙ ˙ α ( | ˙ u | , α ) After collocation (rate), approximation of ˙ u on [ t n − 1 , t n ] (state): 0 ∈ M ¨ u n + C ˙ u n + A u n + ∂ Φ( · , α n )(˙ u n ) − ℓ n α = ˙ ˙ α ( | ˙ u n − λ | , α ) with ˙ u n − λ = λ ˙ u n − 1 + ( 1 − λ )˙ ( 0 ≤ λ < 1 ) u n After time discretisation (rate), determining the flow operator (state) � λ M � τ M + C + τ 0 ∈ u n + ∂ Φ( · , α n )(˙ ˙ u n ) − ℓ n − . . . (R) A λ A α n = Ψ τ ( | ˙ u n − λ | , α n − 1 ) (S) Structure: (R) Positive rate effect � convex minimisation! (S) Trivial. Subduction Zone Simulations with Rate-and-State Friction E. Pipping, R. Kornhuber, M. Rosenau, O. Oncken

  18. References Rate/state coupling t c a p m o u ) | ∈ L 2 (Γ C ) | γ (˙ c , z t i h c s p  i L ( S ) solve ODEs ( γ )   T : H → H ( R ) convex minimisation u ∈ H ˙ ( S )   ( γ ) trace map + norm ( R ) α ∈ L 2 (Γ C ) Subduction Zone Simulations with Rate-and-State Friction E. Pipping, R. Kornhuber, M. Rosenau, O. Oncken

  19. References Rate/state coupling t c a p m o u ) | ∈ L 2 (Γ C ) | γ (˙ c , z t i h c s p  i L ( S ) solve ODEs ( γ )   T : H → H ( R ) convex minimisation u ∈ H ˙ ( S )   ( γ ) trace map + norm ( R ) α ∈ L 2 (Γ C ) Analytic findings: Contraction if • Ageing law • Non-zero Viscosity • τ small enough We then have: Existence, uniqueness, convergence ( � algorithm!). Subduction Zone Simulations with Rate-and-State Friction E. Pipping, R. Kornhuber, M. Rosenau, O. Oncken

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend