strong gravitational lensing and ml generative models for
play

Strong Gravitational Lensing and ML: generative models for galaxies - PowerPoint PPT Presentation

Strong Gravitational Lensing and ML: generative models for galaxies Adam Coogan Dark Machines workshop ICTP , 8-12 April 2019 Observed galaxy p ( src | x ) Generative model p ( lens | x ) Bayesian inference p ( sub | x ) Model


  1. Strong Gravitational Lensing and ML: generative models for galaxies Adam Coogan Dark Machines workshop ICTP , 8-12 April 2019

  2. Observed galaxy p ( θ src | x ) Generative model p ( θ lens | x ) Bayesian inference p ( θ sub | x ) Model physics when possible, use machine learning for the rest

  3. Observed galaxy p ( θ src | x ) Generative model p ( θ lens | x ) Bayesian inference p ( θ sub | x ) http://great3.jb.man.ac.uk/

  4. Observed galaxy p ( θ src | x ) Generative model p ( θ lens | x ) Bayesian inference p ( θ sub | x ) Machine learning for generatively modeling the source light http://great3.jb.man.ac.uk/

  5. Observed galaxy p ( θ src | x ) Generative model p ( θ lens | x ) Bayesian inference p ( θ sub | x ) Machine learning for generatively modeling the source light • Galaxies have diverse, complex morphologies (especially z ≳ 2) http://great3.jb.man.ac.uk/

  6. Observed galaxy p ( θ src | x ) Generative model p ( θ lens | x ) Bayesian inference p ( θ sub | x ) Machine learning for generatively modeling the source light • Galaxies have diverse, complex morphologies (especially z ≳ 2) • Complex source → more accurate lens parameter inference http://great3.jb.man.ac.uk/

  7. Observed galaxy p ( θ src | x ) Generative model p ( θ lens | x ) Bayesian inference p ( θ sub | x ) Machine learning for generatively modeling the source light • Galaxies have diverse, complex morphologies (especially z ≳ 2) • Complex source → more accurate lens parameter inference http://great3.jb.man.ac.uk/

  8. Observed galaxy p ( θ src | x ) Generative model p ( θ lens | x ) Bayesian inference p ( θ sub | x ) Machine learning for generatively modeling the source light • Galaxies have diverse, complex morphologies (especially z ≳ 2) • Complex source → more accurate lens parameter inference http://great3.jb.man.ac.uk/

  9. Source model • Low-dimensional representation of data that: ➡ Captures range of galaxy morphologies ➡ Has a latent space compatible with Bayesian inference Kingma & Welling 2013, Rezende et al 2014

  10. Source model • Low-dimensional representation of data that: ➡ Captures range of galaxy morphologies ➡ Has a latent space compatible with Bayesian inference Variational autoencoder Latent space z x Data Kingma & Welling 2013, Rezende et al 2014

  11. Source model • Low-dimensional representation of data that: ➡ Captures range of galaxy morphologies ➡ Has a latent space compatible with Bayesian inference Variational autoencoder Latent space z Encoder q ϕ ( z | x ) x Data Kingma & Welling 2013, Rezende et al 2014

  12. Source model • Low-dimensional representation of data that: ➡ Captures range of galaxy morphologies ➡ Has a latent space compatible with Bayesian inference Variational autoencoder Latent space z Encoder Decoder p θ ( x | z ) q ϕ ( z | x ) x Data Kingma & Welling 2013, Rezende et al 2014

  13. Source model • Low-dimensional representation of data that: ➡ Captures range of galaxy morphologies ➡ Has a latent space compatible with Bayesian inference Variational autoencoder Latent space z p ( z ) = N (0, I ) Encoder Decoder p θ ( x | z ) q ϕ ( z | x ) x Data Kingma & Welling 2013, Rezende et al 2014

  14. Source model • Low-dimensional representation of data that: ➡ Captures range of galaxy morphologies ➡ Has a latent space compatible with Bayesian inference Variational autoencoder Latent space z p ( z ) = N (0, I ) Encoder Decoder p θ ( x | z ) q ϕ ( z | x ) x Data Kingma & Welling 2013, Rezende et al 2014

  15. Source model • Low-dimensional representation of data that: ➡ Captures range of galaxy morphologies ➡ Has a latent space compatible with Bayesian inference Variational autoencoder Latent space z p ( z ) = N (0, I ) Train encoder, decoder by Encoder Decoder maximizing lower bound on p θ ( x | z ) p(data) q ϕ ( z | x ) x Data Kingma & Welling 2013, Rezende et al 2014

  16. Galaxy VAE • Dataset: ~56,000 galaxies, redshifts ~ 1 http://great3.jb.man.ac.uk/

  17. Galaxy VAE • Dataset: ~56,000 galaxies, redshifts ~ 1 S/N < 10 S/N ~ 20 S/N > 100 http://great3.jb.man.ac.uk/

  18. Galaxy VAE • Dataset: ~56,000 galaxies, redshifts ~ 1 This talk: train on ~10,000 images with S/N = 15 - 50 S/N < 10 S/N ~ 20 S/N > 100 http://great3.jb.man.ac.uk/

  19. Galaxy VAE • Dataset: ~56,000 galaxies, redshifts ~ 1 This talk: train on ~10,000 images with S/N = 15 - 50 S/N < 10 S/N ~ 20 S/N > 100 • Encoder, decoder: deep convolutional neural networks Eg, decoder: http://great3.jb.man.ac.uk/ Radford et al 2015 (DCGAN)

  20. Galaxy VAE: reconstructions x z ∼ q ϕ ( z | x ) x ′ �

  21. Galaxy VAE: reconstructions Original Reconstruction Original Reconstruction Original Reconstruction x z ∼ q ϕ ( z | x ) x ′ �

  22. Galaxy VAE: reconstructions Original Reconstruction Original Reconstruction Original Reconstruction x z ∼ q ϕ ( z | x ) x ′ �

  23. Galaxy VAE: reconstructions Original Reconstruction Original Reconstruction Original Reconstruction x z ∼ q ϕ ( z | x ) x ′ �

  24. Galaxy VAE: reconstructions Original Reconstruction Original Reconstruction Original Reconstruction 1. x 2. z ∼ q ϕ ( z | x ) x ′ � 1. 2.

  25. Galaxy VAE: reconstructions Original Reconstruction Original Reconstruction Original Reconstruction 1. x 2. z ∼ q ϕ ( z | x ) x ′ � 1. 2.

  26. Galaxy VAE: reconstructions Original Reconstruction Original Reconstruction Original Reconstruction 1. x 2. z ∼ q ϕ ( z | x ) x ′ � 1. 2. Rezende & Viola 2018, Zhao et al 2017

  27. Galaxy VAE: samples z ∼ p ( z ) = N (0, I ) Ho ff man & Johnson 2016, Alemi et al 2018

  28. Galaxy VAE: samples z ∼ p ( z ) = N (0, I ) Ho ff man & Johnson 2016, Alemi et al 2018

  29. Galaxy VAE: samples z ∼ p ( z ) = N (0, I ) Ho ff man & Johnson 2016, Alemi et al 2018

  30. Galaxy VAE: samples z distribution for training data z ∼ p ( z ) = N (0, I ) Ho ff man & Johnson 2016, Alemi et al 2018

  31. Galaxy VAE: samples z distribution for training data z ∼ p ( z ) = N (0, I ) ≠ N (0, I ) → open issue with VAEs! Ho ff man & Johnson 2016, Alemi et al 2018

  32. Galaxy VAE: samples z distribution for training data z ∼ p ( z ) = N (0, I ) ≠ N (0, I ) → open issue with VAEs! Our approach: sample z from here to generate better galaxies Ho ff man & Johnson 2016, Alemi et al 2018

  33. Normalizing flows z ∼ N (0, I ) z ′ � ∼ Rezende & Mohamed 2015, Kingma et al 2016, …

  34. Normalizing flows f T ∘ . . . ∘ f 2 ∘ f 1 ( z ) z ∼ N (0, I ) z ′ � ∼ • Compose invertible transformations with simple Jacobians to reshape distributions Rezende & Mohamed 2015, Kingma et al 2016, …

  35. Normalizing flows f T ∘ . . . ∘ f 2 ∘ f 1 ( z ) z ∼ N (0, I ) z ′ � ∼ • Compose invertible transformations with simple Jacobians to reshape distributions • Parametrize with neural networks Rezende & Mohamed 2015, Kingma et al 2016, …

  36. Normalizing flows f T ∘ . . . ∘ f 2 ∘ f 1 ( z ) z ∼ N (0, I ) z ′ � ∼ • Compose invertible transformations with simple Jacobians to reshape distributions • Parametrize with neural networks • For our purposes: inverse autoregressive flows ( IAFs ), which enable e ffi cient sampling of the latent variable Rezende & Mohamed 2015, Kingma et al 2016, …

  37. Galaxy VAE: samples z distribution for training data z samples from IAF fit z ∼ IAF( z ) x

  38. Galaxy VAE: samples z distribution for training data z samples from IAF fit Generated galaxies z ∼ IAF( z ) x

  39. Lensing galaxies True source Observation *Very preliminary, simplified analysis

  40. Lensing galaxies True source Observation Best-fit source *Very preliminary, simplified analysis

  41. Lensing galaxies True source Observation Best-fit source True Einstein radius: 2.3 Best-fit value: 2.29 *Very preliminary, simplified analysis

  42. Conclusions • Integrate galaxy VAE with full analysis pipeline • Improve prior/latent distribution mismatch: • Fully incorporate flows with VAE • Fix blurriness: • More flexible encoder? β /conditional-VAE, …? • Example of “di ff erentiable programming” for physics + ML Tomczak & Welling 2018 Higgins et al 2017

  43. Conclusions • Integrate galaxy VAE with full analysis pipeline • Improve prior/latent distribution mismatch: • Fully incorporate flows with VAE • Fix blurriness: • More flexible encoder? β /conditional-VAE, …? • Example of “di ff erentiable programming” for physics + ML Thanks! Tomczak & Welling 2018 Higgins et al 2017

  44. Lensing MNIST digits True source Observation Simplified lens Poissonian with one observation parameter, r ein noise Outputs from simplified analysis

  45. Lensing MNIST digits True source Observation Simplified lens Poissonian with one observation parameter, r ein noise Outputs from simplified analysis Best-fit source from VAE

  46. Lensing MNIST digits True source Observation Simplified lens Poissonian with one observation parameter, r ein noise Outputs from simplified analysis Lens parameter inference Best-fit source from VAE 100 HMC True r ein 80 SVI p ( r ein | obs) 60 40 20 0 1 . 63 1 . 64 1 . 65 1 . 66 1 . 67 r ein

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend