cosmological weak gravitational lensing
play

Cosmological Weak Gravitational Lensing Hendrik Hildebrandt - - PowerPoint PPT Presentation

Cosmological Weak Gravitational Lensing Hendrik Hildebrandt - Ruhr-Universitt Bochum Credit: LSST CDM Cosmological Constant / Vacuum Energy / Dark Energy Credit: Planck Gravitational light deflection Credit: Michael Sachs


  1. Cosmological Weak Gravitational Lensing Hendrik Hildebrandt - Ruhr-Universität Bochum

  2. Credit: LSST

  3. Λ CDM Cosmological Constant / Vacuum Energy / Dark Energy Credit: Planck

  4. Gravitational light deflection Credit: Michael Sachs

  5. Gravitational lens MASS

  6. Optical lens

  7. Gravitational lens analogue Spherical abberation!

  8. Weak lensing Mellier (1999) ✏ = ✏ ( s ) + g D ✏ ( s ) E h ✏ i = + h g i = h g i

  9. Dark matter in the bullet cluster separated from the hot X-ray gas Credit: NASA, ESA, and D. Clowe

  10. Dark matter maps

  11. Cosmic shear Sensitive to: • Matter distribution • Geometry Observables: • Ellipticities • Photo- z Statistical measurement of many galaxies Wittman et al. (2000)

  12. 2pt shear correlation functions ξ + ( ϑ ) ξ − ( ϑ ) 10 -4 Shear correlation 10 -5 10 -6 10 -7 1 10 100 Kilbinger et al. (2013) ϑ [arcmin] Very directly related to the matter power spectrum P δ .

  13. Observation -> theory ξ ± ( θ ) = ⟨ γ t γ t ⟩ ( θ ) ± ⟨ γ × γ × ⟩ ( θ ) � ∞ � ∞ d ℓ ℓ d ℓ ℓ ξ + ( θ ) = 2 π J 0 ( ℓθ ) P κ ( ℓ ) ; ξ − ( θ ) = 2 π J 4 ( ℓθ ) P κ ( ℓ ) 0 0 � χ h P κ ( ℓ ) = 9 H 4 0 Ω 2 d χ g 2 ( χ ) � � ℓ m a 2 ( χ ) P δ f K ( χ ) , χ 4 c 4 0 � χ h d χ ′ p χ ( χ ′ ) f K ( χ ′ − χ ) g ( χ ) = f K ( χ ′ ) χ

  14. Cosmological constraints • Measure amount of clustered matter • S 8 = σ 8 ( Ω m /0.3) 0.5 Kilbinger et al. (2013)

  15. S 8 results over the years 1 . 1 COSMOS 100 deg 2 CFHTLS/CFHTLenS SDSS-Stripe82 1 . 0 DLS SDSS-DR7 CMB 0 . 9 σ 8 ( Ω m / 0 . 3) α 0 . 8 0 . 7 0 . 6 0 . 5 2006 2008 2010 2012 2014 year Kilbinger (2015)

  16. Dark energy e.o.s. w = p / ρ ; w ( a ) = w 0 + w a (1- a ) ; a = 1/(1+ z ) Joudaki et al. (2017b)

  17. Massive neutrinos Joudaki et al. (2017b)

  18. Warm dark matter − 4 10 l(l+1)C l /2 ! m WDM >2.5keV with Euclid m WDM = 250 eV − 5 m WDM = 500 eV 10 m WDM = 1 keV CDM 0.1 2 3 4 10 10 10 multipole, l Markovi č et al. (2011)

  19. Systematic errors • Shapes measurement systematics: • PSF residuals • B modes • Multiplicative and additive biases • Photo-z systematics: • Calibration sample and technique • Inhomogeneous multi-band data • Theoretical “systematics”: • Intrinsic alignments • Baryon feedback • Neutrinos • WDM • Psychological systematics: • Blinding

  20. HSC: Hyper-Suprime Cam Survey KiDS: Kilo Degree Survey DES: Dark Energy Survey

  21. KiDS-450 CFHTLenS (MID J16) 1.2 WMAP9+ACT+SPT Planck15 1 1.0 σ 8 0.8 0.6 0.1 0.2 0.3 0.4 Ω m

  22. KiDS-450 CFHTLenS (MID J16) 1.2 WMAP9+ACT+SPT Planck15 2 1.0 σ 8 0.8 0.6 0.1 0.2 0.3 0.4 Ω m

  23. KiDS-450 CFHTLenS (MID J16) 1.2 WMAP9+ACT+SPT Planck15 3 1.0 σ 8 0.8 0.6 0.1 0.2 0.3 0.4 Ω m

  24. ?

  25. KiDS-450 KiDS-450 1.2 0.88 CFHTLenS (MID J16) WMAP9+ACT+SPT σ 8 ( Ω m / 0.3) 0.5 Planck15 1.0 0.80 σ 8 0.8 0.72 0.6 0.64 0.16 0.24 0.32 0.40 0.16 0.24 0.32 0.40 Ω m Ω m Hildebrandt et al. (2017)

  26. DES-Y1 Troxel et al. (2018)

  27. HSC-DR1 Hikage et al. (2019)

  28. Other probes McCarthy et al. (2017)

  29. Extended cosmologies • Massive neutrinos • Non-zero curvature • Modified gravity • Running spectral index • DE with constant EoS • Evolving dark energy EoS Joudaki et al. (2017b)

  30. Evolving dark energy 1.50 KiDS-450 ( w 0 w a CDM) KiDS-450 5.0 Planck 2015 ( w 0 w a CDM) Planck 2015 KiDS ( Λ CDM) JLA 2014 1.25 KiDS+Planck 2.5 Planck ( Λ CDM) KiDS+Planck+ H 0 σ 8 w a 1.00 0.0 0.75 − 2.5 − 5.0 0.1 0.2 0.3 0.4 − 2.4 − 1.8 − 1.2 − 0.6 0.0 Ω m Joudaki et al. (2017b) w 0 • Resolves tension between KiDS and Planck. • Only extension that is moderately favoured by the data. • Resolves tension between Riess et al. (2016) and Planck.

  31. Sum of neutrino masses Σ m ν < 4eV (95% CL) from 
 KiDS-450 alone Joudaki et al. (2017b)

  32. VIKING@VISTA • Same footprint as KiDS. • Already finished (1350deg 2 ). • ZYJHK s images. • 5 σ depths of 21.2 ( K s ) to 23.1 ( Z ).

  33. Benefits of NIR • 20% smaller errors due to high-z galaxies alone. • More robust redshifts -> better calibration. Wright et al. (2018)

  34. Cosmological constraints = σ 8 ( Ω m /0.3) 0.5 Hildebrandt et al. (2018)

  35. Cosmological constraints = σ 8 ( Ω m /0.3) 0.5 Hildebrandt et al. (2018)

  36. Credit: NASA, Mauro Giavalisco, Lexi Moustakas, Peter Capak, Len Cowie and the GOODS Team.

  37. Credit: NASA, Mauro Giavalisco, Lexi Moustakas, Peter Capak, Len Cowie and the GOODS Team.

  38. Infrared background 9 deg Credit: 2MASS

  39. Euclid - Overview • Only observe those things from space that you can’t do well from the ground! • ESA/NASA 1.2m Space Telescope • optical + NIR imaging (cosmic shear) • NIR spectroscopy (BAO) • Launch in ∼ 2022 to L2 like e.g. Planck • survey 15 000 sq. deg. in 7 years • 1 billion lensing sources with 0< z <2

  40. Euclid - Science Goals • Measure w 0 to <2% and w a to <10% • Measure γ (growth factor ~0.5) to <0.02 • Constrain Σ m ν to <0.03eV • PS slope ~3x better than Planck • Lots of legacy science (NIR, deep 
 fields, “all-sky” cross-correlations) • Open huge parameter space

  41. Large Synoptic Survey Telescope • 8.4m optical wide-field imaging telescope • Huge camera, rapid survey speed, 18,000deg 2 total • Deep multi-band photometry (also time domain) • Crucial complement to Euclid • Very challenging big data application • US-led with international partners; 
 discussing ODF at the moment

  42. Summary & Outlook • Tension between CMB and most low-z LSS measurements (KV450). Systematics? New physics?? • Very exciting times: • KiDS+VIKING ~1000deg 2 now, 1350deg 2 2019. • DES has tripled area and doubled depth. • HSC gearing up for second data release. • Prepare with today’s data for Euclid/LSST. • Find decisive answer on fundamental questions about 
 DE, DM, neutrino mass, (inflation), etc.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend