strings on celestial sphere
play

Strings on Celestial Sphere Stephan Stieberger, MPP Mnchen String - PowerPoint PPT Presentation

Strings on Celestial Sphere Stephan Stieberger, MPP Mnchen String Theory from a Worldsheet Perspective Galileo Galilei Institute, Firenze April 15 - 19, 2019 based on: St.St., T.R. Taylor: Strings on Celestial Sphere arXiv:1806.05688 Nucl.


  1. Strings on Celestial Sphere Stephan Stieberger, MPP München String Theory from a Worldsheet Perspective Galileo Galilei Institute, Firenze April 15 - 19, 2019

  2. based on: St.St., T.R. Taylor: Strings on Celestial Sphere arXiv:1806.05688 Nucl. Phys. B935 (2018) 388-411 Symmetries of Celestial Amplitudes arXiv:1812.01080 to appear in Phys. Lett. B + work to appear

  3. Recap: studying scattering amplitudes: deep connections between gravity and gauge interactions e.g.: KLT, BCJ, EYM (double-copy-construction) (in momentum or twistor space) traditional momentum space description: p μ k , k = 1,…, N p 2 k = − m 2 k • amplitudes specified by asymptotic wave functions, which transform simply under space-time translations • with manifest translation symmetry • traditional amplitudes describe transitions between momentum eigenstates D=4 Minkowski probably not the right space to see all symmetries of scattering amplitudes

  4. Lorentz group in is identical R 1, D +1 to Euklidian D-dimensional conformal group SO(1,D+1) Scattering amplitudes in R 1, D +1 interpretation as Euklidian D-dimensional conformal correlators I + p in p out 1 2 I − p in 3 p out 1 D=2: celestial sphere p in 2 Can 2D CFT on celestial sphere offer some new insight into gauge-gravity connections ?

  5. ⃗ N particles on celestial sphere represent points on CS 2 p k ⟶ ( E k , z k , z k ) z k z k = p 1 k + ip 2 p k ) 2 = ( p 0 k E k = p 0 k ) 2 with: , k , ( p 0 k + p 3 k k = E k ( 1 , 1 + | z k | 2 ) , 1 − | z k | 2 1 + | z k | 2 , − i ( z k − z k ) z k + z k p μ 1 + | z k | 2 2 E k := ω k q μ ω k = (1 + | z k | 2 ) k E.g.: ⟨ ij ⟩ = 2 ( ω i ω j ) 1/2 ( z i − z j ) [ ij ] = 2 ( ω i ω j ) 1/2 ( z i − z j )

  6. Lorentz symmetry: global conformal symmetry z i → az i + b on CS 2 cz i + d Amplitudes = conformal correlators of primary fields on CS 2 p 3 z k = p 1 k + ip 2 k z 3 x p 0 k + p 3 x k = z 1 g p 2 z 2 x p 1 D = 2 D = 4 g ∼ | z 1 − z 2 | h 1 + h 2 − h 3 | z 2 − z 3 | h 2 + h 3 − h 1 | z 1 − z 3 | h 1 + h 3 − h 2 D=4 space-time QFT correlators D=2 Euklidian CFT correlators D=2 CFT correlators involve conformal wave packets

  7. <latexit sha1_base64="SfbQFaRH6PBiT9mJBmQ7+a/uSM4=">AAAHaHicdVRbTxtHFN64aUjdG7QPVdWXo3hLQSHI60RqpYoqlD4AgiSESyIYsMbjWXuU2UtmZl3syf6r/pn2tX3qr+iZ3R1DCF3b8jnfuX9zdga5FNp0u3/eaX109+N7C/c/aX/62edffLm49NWJzgrF+DHLZKZeD6jmUqT82Agj+etccZoMJH81eLPl7K8mXGmRpUdmmvPzhI5SEQtGDUL9pdY+GfCRSK2hg0JSVdp37B1+3adsk7HL23YFNCxDLmnK4Xc6Qa29DCxL40wlVEKuRELVtDLFRcpcbg2ENAmaNMTwS2MnnJlMQSy4HOpyOSRrAJt9S5KCcCnLlcuf89UNwnMtJDZoAQ3gLFCu5KsE+GVOJI8NcZYcBOR953F54RIoMRobUpK1ELDB8OTCkt+4NBSA5AmUVRXYdTVma2RAFcxWN1ZITpURVPZ34a3LhUVWHr29ltWV8Q2tXthHdc4yvBqw/diRYURaZIUjKsxdYAjL6FM5b0QPBZF4LEOK2b0kUrBkEMPLcjXEXNgHTbjB06oy9Da6awQI5L90Q0wEM+e/dXjRC6/q9mAoNFMYhLWeDEMY4yYwYaYQOs423NhR6DrqoVHnmCHcbdAbFUXKskSkI5jodcgKM8qcsgy3G65aIDwdzrenv9jprnerBz4UokboBM3zor90t0WGGSsSnhomqdZnUTc359YdCZMcV7DQPKfsDR3xMxRT7Fef22rxS/gekSHEbp2QfqjQ6xGWJlpPkwF6JtSM9U2bA2+znRUm/uncijQvDE9ZXSguJJgM3FuErCtcYzlFgTIlsFdgYySTOS7fq6LHRRzfGMQOkrLdJkMeExnbap3LWlXC1kvc6Bp1LUYJbfSYWRJjmUbdZNYShi/gZtkgQ20JrgS+qVNtplVdB2cTiz+u3Ik1kFEYqxIwysceNcjRHBlyU0MoeCzJhjWGgsdoA9E5MrNkxo1vO5l1ohro207kffZPPXqRXMcnfOIMeNmMJIdORFQlNdY9P/Oe93/ukef/PwnNEaEyH9MfytvIq6FDpPvwGt1mbPF3NQdeAtbfBD5m59RWL/FpWdb6Qa0f+Do7WzWw5R2e1fqzuYNvZMd7vLTNveDZTDxPfi8m9YB64l0OT/btFZneNjdaT/8NCw6IOxWVtjcn4dS3c+qdtj2y7ZE9YeenIOaRjAtcsFF1eE52R+f+/fLKLFOVsZGIqgR3a0Q374gPhZPeevR4vXfwpPP01+b+uB98FzwIVoIo+DF4GmwHL4LjgLX+aP3V+rv1z71/FxYXvln4tnZt3Wlivg7eexYe/AejA4fT</latexit> in momentum basis: plane waves with momentum p = ω q ( z ) in conformal basis: conformal primary wave functions Δ = h + h ∈ C construct complete set of on-shell wave functions in D=4: solves D=4 wave (Maxwell) equations and transforms as SL(2,Z) conformal primaries Pasterski, Shao arXiv:1705.01027 bases plane waves conformal primary wavefunctions V ∆ ± z ) = ( @ J q µ ) ( � q µ x µ ⌥ i ✏ ) − ∆ A µ ` ( x ; p ) = ✏ µ ` ( p ) exp { ⌥ ip µ x µ } vector fields µJ ( x ; z, ¯ p µ 3 continuous ∆ = 1 + i � ( � 2 R ) p 2 = 0 , z 2 CS 2 parameters p > 0 2 discrete 4 d helicity ` = ± 1 2 d spin J = ± 1 parameters incoming vs. outgoing incoming vs. outgoing in the massless case the change of basis is furnished by Mellin transform of plane wave (or plus a shadow transform): specified by x and ∞ ∂ J q μ ∫ conformal dimension V Δ ± d ω ω Δ− 1 e ± i ω q ⋅ x − ϵω μ J ( x μ ; z , ¯ z ) = Δ = 1 + i λ , λ ∈ R 2 0 ∂ J q μ no dependence on = ( ∓ i ) Δ Γ ( Δ ) D=4 momentum p μ ( − q μ x μ ∓ i ϵ ) Δ 2 ∂ z q μ = 2 ϵ μ + ( q ) = ( z ,1, − i , − z ) ∂ J q μ = Pasterski, Shao, Strominger, 2017 ∂ z q μ = 2 ϵ μ − ( q ) = ( z ,1, + i , − z )

  8. N-point amplitude on celestial sphere ( p 1 + p 2 − p k ) ℳ ({ p i , ξ j }) N 𝒝 ({ p i , ξ j }) = i (2 π ) 4 δ (4) ∑ k =3 In the massless case, with or without spin, transition from momentum space to conformal primary wavefunctions with conformal dimension Δ j is implemented by Mellin transform: ϕ ( Δ ) = ∫ ∞ ˜ d ω ω Δ− 1 ϕ ( ω ) 0 Δ j = 1 + i λ j Mellin transform, with: z n ) = ( N ∞ N d ω n ) δ (4) ( ω 1 q 1 + ω 2 q 2 − n =1 ∫ ∏ ∑ ˜ ω i λ n 𝒝 { λ n } ( z n , ¯ ω k q k ) n 0 k =3 × ℳ ( ω n , z n , ¯ z n )

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend