stream reasoning with lars
play

Stream Reasoning with LARS Harald Beck Minh Dao-Tran Thomas Eiter - PowerPoint PPT Presentation

Stream Reasoning with LARS Harald Beck Minh Dao-Tran Thomas Eiter The 2nd Stream Reasoning Workshop December 8-9, 2016 Outline LARS Overview (Revised) LARS Syntax and Semantics Recent and Ongoing LARS Research @ KBS LARS Collaboration


  1. Stream Reasoning with LARS Harald Beck Minh Dao-Tran Thomas Eiter The 2nd Stream Reasoning Workshop December 8-9, 2016

  2. Outline LARS Overview (Revised) LARS Syntax and Semantics Recent and Ongoing LARS Research @ KBS LARS’ Collaboration

  3. LARS Overview LARS is a logical framework with a rule-based language that offers ◮ generic window operators, ◮ different ways to refer to time, and ◮ an ASP-like semantics for (analyzing) stream reasoning.

  4. LARS Setting: Streams ) ) ) 5 5 A 2 2 7 r r t t b 2 0 , 1 , , 1 ( ( ( d d d e e e r r r a a a e e e p p p p p p a a a • • • 11 12 13 14 15 16 17 18 19 20 21 22 23 Data Streams D = ( T , υ ) T = [0 , 50]   12 �→ { appeared (0 , tr 25 ) } ,   υ = 17 �→ { appeared (1 , tr 25 ) } , 19 �→ { appeared (1 , b 27 A ) }  

  5. LARS Setting: Streams ) ) ) 5 5 A 2 2 7 ) ) r r t t b 2 5 A 2 7 0 , 1 , , r 1 t b 2 ( ( ( d d d 2 , , 2 e e e ( ( r r r p p a a a x e e e x p p e e p p p p a a a • • • • • 11 12 13 14 15 16 17 18 19 20 21 22 23 Interpretation Stream S ⋆ = ( T ⋆ , υ ⋆ ) ⊇ D T ⋆ = [0 , 50]   12 �→ { appeared (0 , tr 25 ) } , 21 �→ { exp (2 , tr 25 ) } ,   υ ⋆ = 17 �→ { appeared (1 , tr 25 ) } , 23 �→ { exp (2 , b 27 A ) } , 19 �→ { appeared (1 , b 27 A ) }  

  6. LARS Window Functions and Operators ) ) ) 5 5 A 2 2 7 r r b 2 t t 0 , 1 , 1 , ( ( ( d d d e e e r r r a a a e e e p p p p p p a a a • • • 11 12 13 14 15 16 17 18 19 20 21 22 23 Window functions S ′ = ( T ′ , υ ′ ) = w ( S , t ) T ′ = [15 , 20] υ ′ = { 17 �→ { appeared (1 , tr 25 ) } , 19 �→ { appeared (1 , b 27 A ) }} Window operators ⊞ w

  7. (Revised) LARS Syntax α ::=

  8. (Revised) LARS Syntax α ::= a | ¬ α | α ∧ α | α ∨ α | α → α ◮ standard logical operators

  9. (Revised) LARS Syntax α ::= a | ¬ α | α ∧ α | α ∨ α | α → α | ♦ α | � α | @ t α ◮ standard logical operators ◮ various ways for time references

  10. (Revised) LARS Syntax α ::= a | ¬ α | α ∧ α | α ∨ α | α → α | ♦ α | � α | @ t α | ⊞ w α ◮ standard logical operators ◮ various ways for time references ◮ window operators which can be nested ⊞ 60 � ⊞ 10 ♦ appeared ( s , b 1 )

  11. (Revised) LARS Syntax α ::= a | ¬ α | α ∧ α | α ∨ α | α → α | ♦ α | � α | @ t α | ⊞ w α | ⊲α ◮ standard logical operators ◮ various ways for time references ◮ window operators which can be nested ⊞ 60 � ⊞ 10 ♦ appeared ( s , b 1 ) ◮ Reset operator

  12. (Revised) LARS Syntax α ::= a | ¬ α | α ∧ α | α ∨ α | α → α | ♦ α | � α | @ t α | ⊞ w α | ⊲α ◮ standard logical operators ◮ various ways for time references ◮ window operators which can be nested ⊞ 60 � ⊞ 10 ♦ appeared ( s , b 1 ) ◮ Reset operator ◮ Rules @ T + L exp ( M , V ) ← ⊞ 5 @ T appeared ( N , V ) , plan ( N , M , V , L ) .

  13. (Revised) LARS Entailment Structure M = � S ⋆ , W , B �

  14. (Revised) LARS Entailment Structure M = � S ⋆ , W , B � Substream S = ( T , υ ) of S ⋆ : currently considered window Time point t ∈ T

  15. (Revised) LARS Entailment Structure M = � S ⋆ , W , B � Substream S = ( T , υ ) of S ⋆ : currently considered window Time point t ∈ T M , S , t � a iff a ∈ υ ( t ) or a ∈ B ,

  16. (Revised) LARS Entailment Structure M = � S ⋆ , W , B � Substream S = ( T , υ ) of S ⋆ : currently considered window Time point t ∈ T M , S , t � a iff a ∈ υ ( t ) or a ∈ B , M , S , t � ¬ α iff M , S , t � α, M , S , t � α ∧ β iff M , S , t � α and M , S , t � β, M , S , t � α ∨ β iff M , S , t � α or M , S , t � β, M , S , t � α → β iff M , S , t � α or M , S , t � β,

  17. (Revised) LARS Entailment Structure M = � S ⋆ , W , B � Substream S = ( T , υ ) of S ⋆ : currently considered window Time point t ∈ T M , S , t � a iff a ∈ υ ( t ) or a ∈ B , M , S , t � ¬ α iff M , S , t � α, M , S , t � α ∧ β iff M , S , t � α and M , S , t � β, M , S , t � α ∨ β iff M , S , t � α or M , S , t � β, M , S , t � α → β iff M , S , t � α or M , S , t � β, M , S , t ′ � α for some t ′ ∈ T , M , S , t � ♦ α iff

  18. (Revised) LARS Entailment Structure M = � S ⋆ , W , B � Substream S = ( T , υ ) of S ⋆ : currently considered window Time point t ∈ T M , S , t � a iff a ∈ υ ( t ) or a ∈ B , M , S , t � ¬ α iff M , S , t � α, M , S , t � α ∧ β iff M , S , t � α and M , S , t � β, M , S , t � α ∨ β iff M , S , t � α or M , S , t � β, M , S , t � α → β iff M , S , t � α or M , S , t � β, M , S , t ′ � α for some t ′ ∈ T , M , S , t � ♦ α iff M , S , t ′ � α for all t ′ ∈ T , M , S , t � � α iff

  19. (Revised) LARS Entailment Structure M = � S ⋆ , W , B � Substream S = ( T , υ ) of S ⋆ : currently considered window Time point t ∈ T M , S , t � a iff a ∈ υ ( t ) or a ∈ B , M , S , t � ¬ α iff M , S , t � α, M , S , t � α ∧ β iff M , S , t � α and M , S , t � β, M , S , t � α ∨ β iff M , S , t � α or M , S , t � β, M , S , t � α → β iff M , S , t � α or M , S , t � β, M , S , t ′ � α for some t ′ ∈ T , M , S , t � ♦ α iff M , S , t ′ � α for all t ′ ∈ T , M , S , t � � α iff M , S , t ′ � α and t ′ ∈ T , M , S , t � @ t ′ α iff

  20. (Revised) LARS Entailment Structure M = � S ⋆ , W , B � Substream S = ( T , υ ) of S ⋆ : currently considered window Time point t ∈ T M , S , t � a iff a ∈ υ ( t ) or a ∈ B , M , S , t � ¬ α iff M , S , t � α, M , S , t � α ∧ β iff M , S , t � α and M , S , t � β, M , S , t � α ∨ β iff M , S , t � α or M , S , t � β, M , S , t � α → β iff M , S , t � α or M , S , t � β, M , S , t ′ � α for some t ′ ∈ T , M , S , t � ♦ α iff M , S , t ′ � α for all t ′ ∈ T , M , S , t � � α iff M , S , t ′ � α and t ′ ∈ T , M , S , t � @ t ′ α iff M , S ′ , t � α where S ′ = w ( S , t ) , M , S , t � ⊞ w α iff

  21. (Revised) LARS Entailment Structure M = � S ⋆ , W , B � Substream S = ( T , υ ) of S ⋆ : currently considered window Time point t ∈ T M , S , t � a iff a ∈ υ ( t ) or a ∈ B , M , S , t � ¬ α iff M , S , t � α, M , S , t � α ∧ β iff M , S , t � α and M , S , t � β, M , S , t � α ∨ β iff M , S , t � α or M , S , t � β, M , S , t � α → β iff M , S , t � α or M , S , t � β, M , S , t ′ � α for some t ′ ∈ T , M , S , t � ♦ α iff M , S , t ′ � α for all t ′ ∈ T , M , S , t � � α iff M , S , t ′ � α and t ′ ∈ T , M , S , t � @ t ′ α iff M , S ′ , t � α where S ′ = w ( S , t ) , M , S , t � ⊞ w α iff M , S , t � ⊲α iff M , S ⋆ , t � α ,

  22. Scenario Carminweg 26 Kagraner Platz 27 A Kagran 25 U1

  23. LARS Programs ) ) ) 5 5 A 2 2 7 r r 2 t t b , , 0 1 1 , ( ( ( d d d e e e r r r a a a e e e p p p p p p a a a • • • 11 12 13 14 15 16 17 18 19 20 21 22 23 @ T + L exp ( M , V ) ← ⊞ 5 @ T appeared ( N , V ) , plan ( N , M , V , L ) . takeBus ( N ) ← ⊞ +2 ♦ exp( N , B ) , bus ( B ) , not takeTram ( N ) . takeTram ( N ) ← ⊞ +5 ♦ exp( N , Tr ) , tram ( Tr ) , not takeBus ( N ) .

  24. LARS Programs ) ) ) 5 5 A ) 2 2 7 ) r r 2 t t b A 5 , , 2 7 0 1 1 , r 2 t b ( ( ( d d d , 2 2 , e e e ( ( r r r a a p p a e e x x e e p p e p p p p a a a • • • • • 11 12 13 14 15 16 17 18 19 20 21 22 23 @ T + L exp ( M , V ) ← ⊞ 5 @ T appeared ( N , V ) , plan ( N , M , V , L ) . takeBus ( N ) ← ⊞ +2 ♦ exp( N , B ) , bus ( B ) , not takeTram ( N ) . takeTram ( N ) ← ⊞ +5 ♦ exp( N , Tr ) , tram ( Tr ) , not takeBus ( N ) .

  25. LARS Programs ) ) ) 5 5 A ) 2 2 7 ) ) r r 2 t t b 2 A 5 ( , , 2 7 0 1 1 , r s 2 t b ( ( ( u d d d B , 2 2 , e e e e ( ( r r r a a k p p a e e a x x e t e p p e p p p p a a a • • • • • • 11 12 13 14 15 16 17 18 19 20 21 22 23 @ T + L exp ( M , V ) ← ⊞ 5 @ T appeared ( N , V ) , plan ( N , M , V , L ) . takeBus ( N ) ← ⊞ +2 ♦ exp( N , B ) , bus ( B ) , not takeTram ( N ) . takeTram ( N ) ← ⊞ +5 ♦ exp( N , Tr ) , tram ( Tr ) , not takeBus ( N ) .

  26. LARS Programs ) ) ) 5 5 A ) ) 2 2 7 ) r r 2 2 t t b ( A 5 , , m 2 7 0 1 1 , r 2 t b ( ( ( a d d d r , 2 2 , T e e e ( ( r r r e a a p p a k e e x x e a e p p e p t p p p a a a • • • • • • 11 12 13 14 15 16 17 18 19 20 21 22 23 @ T + L exp ( M , V ) ← ⊞ 5 @ T appeared ( N , V ) , plan ( N , M , V , L ) . takeBus ( N ) ← ⊞ +2 ♦ exp( N , B ) , bus ( B ) , not takeTram ( N ) . takeTram ( N ) ← ⊞ +5 ♦ exp( N , Tr ) , tram ( Tr ) , not takeBus ( N ) .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend