stochastic processes
play

Stochastic Processes MATH5835, P. Del Moral UNSW, School of - PowerPoint PPT Presentation

Stochastic Processes MATH5835, P. Del Moral UNSW, School of Mathematics & Statistics Lectures Notes, No. 5 Consultations (RC 5112): Wednesday 3.30 pm 4.30 pm & Thursday 3.30 pm 4.30 pm 1/34 Reminder + Information References in


  1. Stochastic Processes MATH5835, P. Del Moral UNSW, School of Mathematics & Statistics Lectures Notes, No. 5 Consultations (RC 5112): Wednesday 3.30 pm � 4.30 pm & Thursday 3.30 pm � 4.30 pm 1/34

  2. Reminder + Information References in the slides ◮ Material for research projects � Moodle ( Stochastic Processes and Applications ∋ variety of applications) ◮ Important results ⊂ Assessment/Final exam = LOGO = 2/34

  3. Citations of the day 3/34

  4. Citations of the day Since the mathematicians have invaded the theory of relativity, I do not understand it myself anymore. 3/34

  5. Citations of the day Since the mathematicians have invaded the theory of relativity, I do not understand it myself anymore. It should be possible to explain the laws of physics to a barmaid. – Albert Einstein (1879-1955) 3/34

  6. Mixture of 3 subjects 1. A complement on martingales 2. A brief reminder on dynamical systems 3. Intro to continuous time stochastic calculus ◮ Brownian motion ◮ Ito(-Doeblin) formula ◮ The heat equation 4/34

  7. Mixture of 3 subjects 1. A complement on martingales 2. A brief reminder on dynamical systems 3. Intro to continuous time stochastic calculus ◮ Brownian motion ◮ Ito(-Doeblin) formula ◮ The heat equation Central/fundamental subjects in stochastic process theory!!!! 4/34

  8. Mixture of 3 subjects 1. A complement on martingales 2. A brief reminder on dynamical systems 3. Intro to continuous time stochastic calculus ◮ Brownian motion ◮ Ito(-Doeblin) formula ◮ The heat equation Central/fundamental subjects in stochastic process theory!!!! ↑ attention 4/34

  9. Mixture of 3 subjects 1. A complement on martingales 2. A brief reminder on dynamical systems 3. Intro to continuous time stochastic calculus ◮ Brownian motion ◮ Ito(-Doeblin) formula ◮ The heat equation Central/fundamental subjects in stochastic process theory!!!! ↑ attention ⊕ ↑ consultation times 4/34

  10. Mixture of 3 subjects 1. A complement on martingales 2. A brief reminder on dynamical systems 3. Intro to continuous time stochastic calculus ◮ Brownian motion ◮ Ito(-Doeblin) formula ◮ The heat equation Central/fundamental subjects in stochastic process theory!!!! ↑ attention ⊕ ↑ consultation times ⊕ ↑ questions 4/34

  11. Mixture of 3 subjects 1. A complement on martingales 2. A brief reminder on dynamical systems 3. Intro to continuous time stochastic calculus ◮ Brownian motion ◮ Ito(-Doeblin) formula ◮ The heat equation Central/fundamental subjects in stochastic process theory!!!! ↑ attention ⊕ ↑ consultation times ⊕ ↑ questions ⇒ ↓ speed 4/34

  12. Designing martingales ϕ n ( ǫ 0 , . . . , ǫ n ) ∈ S (colors, tails/heads, R d ,. . . ) �→ f ( X n ) ∈ R d =1 X n = The natural filtration of information: F n = σ ( ǫ p , 0 ≤ p ≤ n ) = ↑ information ∼ random process 5/34

  13. Designing martingales ϕ n ( ǫ 0 , . . . , ǫ n ) ∈ S (colors, tails/heads, R d ,. . . ) �→ f ( X n ) ∈ R d =1 X n = The natural filtration of information: F n = σ ( ǫ p , 0 ≤ p ≤ n ) = ↑ information ∼ random process Predictable and martingale parts of ∆ f ( X n ) = f ( X n ) − f ( X n − 1 ) 5/34

  14. Designing martingales ϕ n ( ǫ 0 , . . . , ǫ n ) ∈ S (colors, tails/heads, R d ,. . . ) �→ f ( X n ) ∈ R d =1 X n = The natural filtration of information: F n = σ ( ǫ p , 0 ≤ p ≤ n ) = ↑ information ∼ random process Predictable and martingale parts of ∆ f ( X n ) = f ( X n ) − f ( X n − 1 ) ∆ A n ( f ) := E (∆ f ( X n ) | F n − 1 ) = predictable increment 5/34

  15. Designing martingales ϕ n ( ǫ 0 , . . . , ǫ n ) ∈ S (colors, tails/heads, R d ,. . . ) �→ f ( X n ) ∈ R d =1 X n = The natural filtration of information: F n = σ ( ǫ p , 0 ≤ p ≤ n ) = ↑ information ∼ random process Predictable and martingale parts of ∆ f ( X n ) = f ( X n ) − f ( X n − 1 ) ∆ A n ( f ) := E (∆ f ( X n ) | F n − 1 ) = predictable increment ∆ f ( X n ) − E (∆ f ( X n ) | F n − 1 ) = martingale increment ∆ M n ( f ) := 5/34

  16. Designing martingales ϕ n ( ǫ 0 , . . . , ǫ n ) ∈ S (colors, tails/heads, R d ,. . . ) �→ f ( X n ) ∈ R d =1 X n = The natural filtration of information: F n = σ ( ǫ p , 0 ≤ p ≤ n ) = ↑ information ∼ random process Predictable and martingale parts of ∆ f ( X n ) = f ( X n ) − f ( X n − 1 ) ∆ A n ( f ) := E (∆ f ( X n ) | F n − 1 ) = predictable increment ∆ f ( X n ) − E (∆ f ( X n ) | F n − 1 ) = martingale increment ∆ M n ( f ) := Martingale decomposition f ( X n ) = f ( X 0 ) � � + E (∆ f ( X p ) | F p − 1 ) + [∆ f ( X p ) − E (∆ f ( X p ) | F p − 1 )] 1 ≤ p ≤ n 1 ≤ p ≤ n � �� � � �� � Predictable part Martingale part 5/34

  17. An example = The simple Random walk ∆ X n := X n − X n − 1 = ǫ n i.i.d. ǫ n = +1 / − 1 proba 1 / 2 f ( x ) = x & F n = σ ( ǫ p , p ≤ n ) info on the game at time n ∆ A n ( f ) := E (∆ X n | F n − 1 ) = 0 = predictable increment 6/34

  18. An example = The simple Random walk ∆ X n := X n − X n − 1 = ǫ n i.i.d. ǫ n = +1 / − 1 proba 1 / 2 f ( x ) = x & F n = σ ( ǫ p , p ≤ n ) info on the game at time n ∆ A n ( f ) := E (∆ X n | F n − 1 ) = 0 = predictable increment ∆ M n ( f ) := ∆ X n − E (∆ X n | F n − 1 ) = ǫ n = martingale increment f ( x ) = x 3 ( exo ) 6/34

  19. An example = The simple Random walk ∆ X n := X n − X n − 1 = ǫ n i.i.d. ǫ n = +1 / − 1 proba 1 / 2 f ( x ) = x & F n = σ ( ǫ p , p ≤ n ) info on the game at time n ∆ A n ( f ) := E (∆ X n | F n − 1 ) = 0 = predictable increment ∆ M n ( f ) := ∆ X n − E (∆ X n | F n − 1 ) = ǫ n = martingale increment f ( x ) = x 3 ( exo ) ( X n − 1 + ǫ n ) 3 − X 3 X 3 n − X 3 n − 1 = 3 X n − 1 + (3 X 2 = n − 1 + 1) ǫ n n − 1 6/34

  20. An example = The simple Random walk ∆ X n := X n − X n − 1 = ǫ n i.i.d. ǫ n = +1 / − 1 proba 1 / 2 f ( x ) = x & F n = σ ( ǫ p , p ≤ n ) info on the game at time n ∆ A n ( f ) := E (∆ X n | F n − 1 ) = 0 = predictable increment ∆ M n ( f ) := ∆ X n − E (∆ X n | F n − 1 ) = ǫ n = martingale increment f ( x ) = x 3 ( exo ) ( X n − 1 + ǫ n ) 3 − X 3 X 3 n − X 3 n − 1 = 3 X n − 1 + (3 X 2 = n − 1 + 1) ǫ n n − 1 ⇓ � � X 3 n − X 3 ∆ A n ( f ) := n − 1 | F n − 1 = 3 X n − 1 = predictable increment E 6/34

  21. An example = The simple Random walk ∆ X n := X n − X n − 1 = ǫ n i.i.d. ǫ n = +1 / − 1 proba 1 / 2 f ( x ) = x & F n = σ ( ǫ p , p ≤ n ) info on the game at time n ∆ A n ( f ) := E (∆ X n | F n − 1 ) = 0 = predictable increment ∆ M n ( f ) := ∆ X n − E (∆ X n | F n − 1 ) = ǫ n = martingale increment f ( x ) = x 3 ( exo ) ( X n − 1 + ǫ n ) 3 − X 3 X 3 n − X 3 n − 1 = 3 X n − 1 + (3 X 2 = n − 1 + 1) ǫ n n − 1 ⇓ � � X 3 n − X 3 ∆ A n ( f ) := n − 1 | F n − 1 = 3 X n − 1 = predictable increment E (3 X 2 ∆ M n ( f ) := n − 1 + 1) ǫ n = martingale increment 6/34

  22. The martingale 2 [with M 0 = 0] � M 2 (∆ M 2 ) p (∆ M 2 ) p = M 2 p − M 2 = with n p − 1 1 ≤ p ≤ n 7/34

  23. The martingale 2 [with M 0 = 0] � M 2 (∆ M 2 ) p (∆ M 2 ) p = M 2 p − M 2 = with n p − 1 1 ≤ p ≤ n � � � � � � �� ( ∆M 2 ) p | F p − 1 (∆ M 2 ) p − E ( ∆M 2 ) p | F p − 1 = + E 1 ≤ p ≤ n 1 ≤ p ≤ n � �� � = martingale (exo 1) 7/34

  24. The martingale 2 [with M 0 = 0] � M 2 (∆ M 2 ) p (∆ M 2 ) p = M 2 p − M 2 = with n p − 1 1 ≤ p ≤ n � � � � � � �� ( ∆M 2 ) p | F p − 1 (∆ M 2 ) p − E ( ∆M 2 ) p | F p − 1 = + E 1 ≤ p ≤ n 1 ≤ p ≤ n � �� � = martingale (exo 1) � � � � (∆ M 2 ) p | F p − 1 M 2 p − M 2 = p − 1 | F p − 1 E E � � ( M p − M p − 1 ) 2 | F p − 1 = E (exo 2) 7/34

  25. The martingale 2 [with M 0 = 0] � M 2 (∆ M 2 ) p (∆ M 2 ) p = M 2 p − M 2 = with n p − 1 1 ≤ p ≤ n � � � � � � �� ( ∆M 2 ) p | F p − 1 (∆ M 2 ) p − E ( ∆M 2 ) p | F p − 1 = + E 1 ≤ p ≤ n 1 ≤ p ≤ n � �� � = martingale (exo 1) � � � � (∆ M 2 ) p | F p − 1 M 2 p − M 2 = p − 1 | F p − 1 E E � � ( M p − M p − 1 ) 2 | F p − 1 = E (exo 2) Predictable quadratic variation = angle bracket � � (∆ M p ) 2 | F p − 1 � M 2 n = � M � n + Martingale with � M � n := E 1 ≤ p ≤ n 7/34

  26. An example = The simple Random walk M n = M n − 1 + ǫ n i.i.d. ǫ n = +1 / − 1 proba 1 / 2 ⇓ ( M n − 1 + ǫ n ) 2 − M 2 M 2 n − M 2 = n − 1 n − 1 2 M n − 1 ǫ n + ǫ 2 = n = 2 M n − 1 ǫ n + 1 ⇓ � � ( M n − M n − 1 ) 2 | F n − 1 � � M 2 n − M 2 n − 1 | F n − 1 = E = 1 E ⇓ � M 2 n = � M � n + Martingale with � M � n := 1 = n 1 ≤ p ≤ n 8/34

  27. A brief reminder on dynamical systems . X t = b ( X t ) 9/34

  28. A brief reminder on dynamical systems . X t = b ( X t ) ⇐ ⇒ dX t = b ( X t ) dt Key properties: 1. Smooth differentiable trajectories. 2. Fully predictable when we know the initial condition. 3. Well adapted to standard differential calculus. 9/34

  29. � Leibnitz ”long s ” = . X t = b ( X t ) 10/34

  30. � Leibnitz ”long s ” = . ⇐ ⇒ X t = b ( X t ) dX t = b ( X t ) dt 10/34

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend