a martingale approach for fractional brownian motions and
play

A Martingale Approach for Fractional Brownian Motions and Related - PowerPoint PPT Presentation

Introduction Heat equation Functional It formula Nonlinear extension A Martingale Approach for Fractional Brownian Motions and Related Path - Dependent PDEs Jianfeng ZHANG, University of Southern California Frederi VIENS , Michigan State


  1. Introduction Heat equation Functional Itô formula Nonlinear extension A Martingale Approach for Fractional Brownian Motions and Related Path - Dependent PDEs Jianfeng ZHANG, University of Southern California Frederi VIENS , Michigan State University XXIII Escola Brasileira de Probabilidade Universidade de São Paulo, São Carlos, Brasil, 26/7/2019 Logo Jianfeng ZHANG (USC) Martingale Approach for fBM and PPDE

  2. Introduction Heat equation Functional Itô formula Nonlinear extension Outline 1 Introduction 2 Heat equation 3 Functional Itô formula 4 Nonlinear extension Logo Jianfeng ZHANG (USC) Martingale Approach for fBM and PPDE

  3. Introduction Heat equation Functional Itô formula Nonlinear extension The standard risk neutral pricing • Let S be an underlying asset price, l P a risk neutral measure : dS t = σ ( t , S t ) dB t • Let ξ = g ( S T ) be a payoff at T , then the price at t is : Y t = I E t [ ξ ] • In the above Markovian setting : Y t = u ( t , S t ) , ∂ t u + 1 2 σ 2 ( t , x ) ∂ 2 xx u = 0 , u ( T , x ) = g ( x ) . • In path dependent setting : σ = σ ( t , S · ) , ξ = g ( S · ) , then Y t = u ( t , S · ) , ∂ t u + 1 2 σ 2 ( t , ω ) ∂ 2 ωω u = 0 , u ( T , ω ) = g ( ω ) . Logo Jianfeng ZHANG (USC) Martingale Approach for fBM and PPDE

  4. Introduction Heat equation Functional Itô formula Nonlinear extension Rough volatility model • Rough volatility : dS t = S t σ t dB t and σ is rough ⋄ See e.g. Gatheral-Jaisson-Rosenbaum (2014) • A natural model : σ driven by a fractional Brownian motion B H � F B , B H � � � • Goal : characterize Y t := I E ξ t ⋄ σ (hence B H ) can be observed ⋄ To focus on the main idea we will assume ξ is F B H T -measurable � F B H � � � and consider Y t = I E ξ t ⋄ Sone related recent works : El Euch-Rosenbaum (2017), Fouque-Hu (2017) Logo Jianfeng ZHANG (USC) Martingale Approach for fBM and PPDE

  5. Introduction Heat equation Functional Itô formula Nonlinear extension Outline 1 Introduction 2 Heat equation 3 Functional Itô formula 4 Nonlinear extension Logo Jianfeng ZHANG (USC) Martingale Approach for fBM and PPDE

  6. Introduction Heat equation Functional Itô formula Nonlinear extension Fractional Brownian Motion • Let B H be a fBM with 0 < H < 1 : ⋄ B H t − B H s ∼ Normal ( 0 , ( t − s ) 2 H ) ⋄ B H = B when H = 1 2 • Two main features : ⋄ B H is not Markovian ( H � = 1 2 ) ⋄ B H is not a semimartingale ( H < 1 2 ) � F B H � � g ( B H � • Our goal : characterize Y t := I E · ) t Logo Jianfeng ZHANG (USC) Martingale Approach for fBM and PPDE

  7. Introduction Heat equation Functional Itô formula Nonlinear extension Heat equation in BM case • Let ξ := g ( B T ) and Y t := I E t [ g ( B T )] . • Denote � � � v ( t , x ) := I g ( x + B T − B t ) = R g ( y ) p ( T − t , y − x ) dy E I 2 π t e − x 2 1 2 t . where p ( t , x ) := √ • Heat equation : ∂ t p ( t , x ) − 1 2 ∂ xx p ( t , x ) = 0 ∂ t v ( t , x ) + 1 2 ∂ xx v ( t , x ) = 0 , v ( T , x ) = g ( x ) . • Y t = v ( t , B t ) , 0 ≤ t ≤ T Logo Jianfeng ZHANG (USC) Martingale Approach for fBM and PPDE

  8. Introduction Heat equation Functional Itô formula Nonlinear extension A Heat equation for fBM • Let ξ := g ( B H E t [ g ( B H T ) and Y t := I T )] . • Denote � g ( x + B H T − B H � � v ( t , x ) := I E t ) = R g ( y ) p H ( T − t , y − x ) dy I x 2 2 π t H e − 2 t 2 H . 1 where p H ( t , x ) := √ • Heat equation : ∂ t v ( t , x ) + Ht 2 H − 1 ∂ xx v ( t , x ) = 0 , v ( T , x ) = g ( x ) . • Y 0 = v ( 0 , 0 ) Logo Jianfeng ZHANG (USC) Martingale Approach for fBM and PPDE

  9. Introduction Heat equation Functional Itô formula Nonlinear extension A heat equation for fBM • Let ξ := g ( B H E t [ g ( B H T ) and Y t := I T )] . � g ( x + B H T − B H � • Denote v ( t , x ) := I E t ) • Heat equation : ∂ t v ( t , x ) + Ht 2 H − 1 ∂ xx v ( t , x ) = 0 , v ( T , x ) = g ( x ) . • Y 0 = v ( 0 , B H 0 ) , Y T = v ( T , B H T ) • However, v ( t , B H t ) is not a martingale : Y t � = v ( t , B H t ) for 0 < t < T . Logo Jianfeng ZHANG (USC) Martingale Approach for fBM and PPDE

  10. Introduction Heat equation Functional Itô formula Nonlinear extension A crucial representation of fBM � t • Representation : B H t = 0 K ( t , r ) dW r F B H = l F W ⋄ l F := l ⋄ K ( t , r ) ∼ ( t − r ) 2 H − 1 , which blows up at t = r when H < 1 2 • Decomposition : � T � t � T B H T = K ( T , r ) dW r = K ( T , r ) dW r + K ( T , r ) dW r 0 0 t � t ⋄ 0 K ( T , r ) dW r is F t -measurable � T ⋄ t K ( T , r ) dW r is independent of F t ⋄ The previous decomposition B H T = B H t + [ B H T − B H t ] does not Logo satisfy this property Jianfeng ZHANG (USC) Martingale Approach for fBM and PPDE

  11. Introduction Heat equation Functional Itô formula Nonlinear extension An alternative heat equation • Let ξ := g ( B H T ) and �� t � T � �� Y t = I K ( T , r ) dW r + K ( T , r ) dW r E t g 0 t � T � �� � • Denote v ( t , x ) := I x + t K ( T , r ) dW r E g � t � � • Then Y t = v t , 0 K ( T , r ) dW r , 0 ≤ t ≤ T � t � � • Note : v t , 0 K ( T , r ) dW r is a martingale • Heat equation : ∂ t v ( t , x ) + 1 2 K 2 ( T , t ) ∂ xx v ( t , x ) = 0 , v ( T , x ) = g ( x ) . Logo Jianfeng ZHANG (USC) Martingale Approach for fBM and PPDE

  12. Introduction Heat equation Functional Itô formula Nonlinear extension A closer look � t • Θ t E t [ B H T := 0 K ( T , r ) dW r = I T ] is F t -measurable ⋄ Θ t T is the forward variance and is observable in market • Three ways to express Y t : Y t = v 1 ( t , B H t ∧· ) = v 2 ( t , W t ∧· ) = v ( t , Θ t T ) ⋄ B H is not a semimartingale ⋄ W is a martingale (of course) but v 2 is not continuous ⋄ v has desired regularity and t �→ Θ t T is a martingale Logo Jianfeng ZHANG (USC) Martingale Approach for fBM and PPDE

  13. Introduction Heat equation Functional Itô formula Nonlinear extension An extension � T � � g ( B H t f ( s , B H • Denote Y t := I E t T ) + s ) ds . • By previous computation : � T E t [ g ( B H E t [ f ( s , B H Y t = I T )] + t I s )] ds � T E t [ B H E t [ B H = v ( T , g ; t , I T ]) + t v ( s , f ( s , · ); t , I s ]) ds E t [ B H = u ( t , { I s ] } t ≤ s ≤ T ) • Note : u is path dependent ⋄ If H = 1 2 , I E t [ B s ] = B t , so Y t = u ( t , B t ) is state dependent ⋄ In more general cases, � � t , { B H E t [ B H Y t = u s } 0 ≤ s ≤ t ⊗ t { I s ] } t ≤ s ≤ T . Logo Jianfeng ZHANG (USC) Martingale Approach for fBM and PPDE

  14. Introduction Heat equation Functional Itô formula Nonlinear extension Outline 1 Introduction 2 Heat equation 3 Functional Itô formula 4 Nonlinear extension Logo Jianfeng ZHANG (USC) Martingale Approach for fBM and PPDE

  15. Introduction Heat equation Functional Itô formula Nonlinear extension The canonical setup • Recall � � t , { B H E t [ B H Y t = u s } 0 ≤ s ≤ t ⊗ t { I s ] } t ≤ s ≤ T . D 0 ([ 0 , t )) , and θ ∈ C 0 ([ t , T ]) , define : • For t ∈ [ 0 , T ] , ω ∈ l ( ω ⊗ t θ ) s := ω s 1 [ 0 , t ) ( s ) + θ s 1 [ t , T ] ( s ) , 0 ≤ s ≤ T . • The canonical space : � � D 0 ([ 0 , t )) , θ ∈ C 0 ([ t , T ]) Λ := ( t , ω ⊗ t θ ) : t ∈ [ 0 , T ] , ω ∈ l ; � � ( t , ω ⊗ t θ ) ∈ Λ : ω ∈ C 0 ([ 0 , t ]) , ω 0 = 0 , θ t = ω t Λ 0 := . Logo Jianfeng ZHANG (USC) Martingale Approach for fBM and PPDE

  16. Introduction Heat equation Functional Itô formula Nonlinear extension Continuous mapping • Recall � � D 0 ([ 0 , t )) , θ ∈ C 0 ([ t , T ]) Λ := ( t , ω ⊗ t θ ) : t ∈ [ 0 , T ] , ω ∈ l . • The metric : d (( t , ω ⊗ t θ ) , ( t ′ , ω ′ ⊗ t ′ θ ′ )) | t − t ′ | + sup 0 ≤ s ≤ T | ( ω ⊗ t θ ) s − ( ω ′ ⊗ t ′ θ ′ ) s | . � := • C 0 (Λ) : continuous mapping u : Λ → I R • C 0 b (Λ) : bounded u ∈ C 0 (Λ) Logo Jianfeng ZHANG (USC) Martingale Approach for fBM and PPDE

  17. Introduction Heat equation Functional Itô formula Nonlinear extension Path derivatives • Time derivative : u ( t + δ, ω ⊗ t θ ) − u ( t , ω ⊗ t θ ) ∂ t u ( t , ω ⊗ t θ ) := lim . δ δ ↓ 0 ⋄ ∂ t u is the right time derivative ! • First order spatial derivative : Fréchet derivative with respect to θ 1 � � � ∂ θ u ( t , ω ⊗ t θ ) , η � := lim u ( t , ω ⊗ t ( θ + εη )) − u ( t , ω ⊗ t θ ) , ε ε → 0 for all ( t , ω ⊗ t θ ) ∈ Λ , η ∈ C 0 ([ t , T ]) . Logo Jianfeng ZHANG (USC) Martingale Approach for fBM and PPDE

  18. Introduction Heat equation Functional Itô formula Nonlinear extension Path derivatives (cont) • Second order spatial derivative : bilinear operator on C 0 ([ t , T ]) : � ∂ 2 θθ u ( t , ω ⊗ t θ ) , ( η 1 , η 2 ) � � � := lim ε → 0 1 � ∂ θ u ( t , ω ⊗ t ( θ + εη 1 )) , η 2 � − � ∂ θ u ( t , ω ⊗ t θ ) , η 2 � . ε for all ( t , ω ⊗ t θ ) ∈ Λ , η 1 , η 2 ∈ C 0 ([ t , T ]) . • Define the spaces C 1 , 2 (Λ) and C 1 , 2 b (Λ) in obvious sense Logo Jianfeng ZHANG (USC) Martingale Approach for fBM and PPDE

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend