a martingale inequality d h fremlin university of essex
play

A martingale inequality D.H.Fremlin University of Essex, - PDF document

filename n14513.tex Version of 28.5.14 A martingale inequality D.H.Fremlin University of Essex, Colchester, England Theorem Suppose that ( , , ) is a probability space, 0 . . . n are -subalgebras of , ( Y 0 , . . . ,


  1. filename n14513.tex Version of 28.5.14 A martingale inequality D.H.Fremlin University of Essex, Colchester, England Theorem Suppose that (Ω , Σ , µ ) is a probability space, Σ 0 ⊆ . . . ⊆ Σ n are σ -subalgebras of Σ, ( Y 0 , . . . , Y n ) is a martingale adapted to (Σ 0 , . . . , Σ n ), and X i : Ω → [ − 1 , 1] is Σ i -measurable for each i < n . Set Z = � n − 1 i =0 X i × ( Y i +1 − Y i ). 1 Then Pr( | Z | ≥ M ) ≤ M 2 / 3 (1 + E ( | Y n | )) for every M > 0. 1

  2. 2 Theorem If ( Y 0 , . . . , Y n ) is a martingale adapted to (Σ 0 , . . . , Σ n ), X i : Ω → [ − 1 , 1] is Σ i -measurable for i < n , and Z = � n − 1 i =0 X i × ( Y i +1 − Y i ), 1 then Pr( | Z | ≥ M ) ≤ M 2 / 3 (1 + E ( | Y n | )) for every M > 0. Doob’s maximal inequality If ( Y 0 , . . . , Y n ) is a martingale, and Z = max i ≤ n | Y i | , then Pr( | Z | ≥ M ) ≤ 1 M E ( | Y n | ) for every M > 0. Measure Theory

  3. 3 Theorem If ( Y 0 , . . . , Y n ) is a martingale adapted to (Σ 0 , . . . , Σ n ), X i : Ω → [ − 1 , 1] is Σ i -measurable for i < n , and Z = � n − 1 i =0 X i × ( Y i +1 − Y i ), 1 then Pr( | Z | ≥ M ) ≤ M 2 / 3 (1 + E ( | Y n | )) for every M > 0. A fractionally sharper theorem If ( Y 0 , . . . , Y n ) is a martingale adapted to (Σ 0 , . . . , Σ n ), X i : Ω → [ − 1 , 1] is Σ i -measurable for i < n , and Z = � n − 1 i =0 X i × ( Y i +1 − Y i ), then Pr( | Z | ≥ M ) ≤ K 2 M 2 + 1 K E ( | Y n | ) for all K , M > 0. (Set K = M 2 / 3 to get the original version.) Case 1 Suppose that | Y n | ≤ a.e. K . Then Pr( | Z | ≥ M ) ≤ K 2 M 2 . D.H.Fremlin

  4. 4 Case 1 Suppose that | Y n | ≤ a.e. K . Then Pr( | Z | ≥ M ) ≤ K 2 M 2 . proof We have n − 1 n − 1 � � E ( Z 2 ) = E ( X i × X j × ( Y i +1 − Y i ) × ( Y j +1 − Y j )) i =0 j =0 n − 1 � E ( X 2 i × ( Y i +1 − Y i ) 2 ) = i =0 (because if i < j , X i × X j × ( Y i +1 − Y i ) is Σ j -measurable, while 0 is a conditional expectation of Y j +1 − Y j on Σ j ) n − 1 � E (( Y i +1 − Y i ) 2 ) ≤ i =0 n − 1 � E ( Y 2 i +1 − Y 2 = i ) − 2 E ( Y i × ( Y i +1 − Y i )) i =0 n − 1 � E ( Y 2 i +1 − Y 2 i ) = E ( Y 2 n ) − E ( Y 2 0 ) ≤ K 2 = i =0 and the result follows at once. Measure Theory

  5. 5 Case 2 Suppose that whenever i < n and max j ≤ i | Y j ( ω ) | < K ≤ | Y i +1 ( ω ) | then | Y i +1 ( ω ) | = K . Then Pr( | Z | ≥ M ) ≤ K 2 M 2 + 1 K E ( | Y n | ). proof Set Y ′ i ( ω ) = 0 if | Y 0 ( ω ) | ≥ K, = Y i ( ω ) if | Y j ( ω ) | < K for every j ≤ i, = Y k ( ω ) if 0 < k ≤ i, | Y j ( ω ) | < K for every j < k, | Y k ( ω ) | = K and set Z ′ = � n − 1 i =0 X i × ( Y ′ i +1 − Y ′ i ). By Case 1, Pr( | Z ′ | ≥ M ) ≤ K 2 M 2 , so Pr( | Z | ≥ M ) ≤ Pr( | Z ′ | ≥ M ) + Pr( Z ′ � = Z ) ≤ K 2 M 2 + Pr( ∃ i, Y ′ i � = Y i ) ≤ K 2 M 2 + Pr( ∃ i, | Y i | ≥ K ) ≤ K 2 M 2 + 1 K E ( | Y n | ) by Doob’s inequality. D.H.Fremlin

  6. 6 Lemma Suppose that (Ω , Σ , µ ) is a probability space, Σ 0 ⊆ . . . ⊆ Σ n are σ -subalgebras of Σ, ( Y 0 , . . . , Y n ) is a martingale adapted to (Σ 0 , . . . , Σ n ), and X i : Ω → [ − 1 , 1] is Σ i -measurable for each i < n . Then there are a probability space (Ω ′ , Σ ′ , µ ′ ), σ -subalgebras Σ ′ 0 ⊆ . . . ⊆ Σ ′ 2 n of Σ ′ , a martingale ( Y ′ 0 , . . . , Y ′ 2 n ) adapted to (Σ ′ 0 , . . . , Σ ′ 2 n ), and a Σ ′ 2 i -measurable random variable X ′ 2 i for each i < n , such that (i) whenever i < n and | Y ′ 2 i ( ω ′ ) | < K then either | Y ′ 2 i +1 ( ω ′ ) | = K or | Y ′ 2 i +1 ( ω ′ ) | < K and | Y ′ 2 i +2 ( ω ′ ) | < K , (ii) Y ′ 0 , Y ′ 2 , . . . , Y ′ 2 n , X ′ 0 , X ′ 2 , . . . , X ′ 2 n − 2 have the same joint distribution as Y 0 , Y 1 , . . . , Y n , X 0 , X 1 , . . . , X n − 1 . proof of theorem Set X ′ 2 i +1 = X ′ 2 i for i < n , Z ′ = � 2 n − 1 j ) = � n − 1 j =0 X ′ j × ( Y ′ j +1 − Y ′ i =0 X ′ 2 i × ( Y ′ 2 i +2 − Y ′ 2 i ). Then Z and Z ′ have the same distribution so Pr( | Z | ≥ M ) = Pr( | Z ′ | ≥ M ) ≤ K 2 M 2 + 1 K E ( | Y ′ 2 n | ) (by Case 2) = K 2 M 2 + 1 K E ( | Y n | ) . Measure Theory

  7. 7 Lemma Suppose that ( Y 0 , . . . , Y n ) is a martingale adapted to (Σ 0 , . . . , Σ n ), and X i : Ω → [ − 1 , 1] is Σ i -measurable for each i < n . Then there are a probability space (Ω ′ , Σ ′ , µ ′ ), a martingale ( Y ′ 0 , . . . , Y ′ 2 n ) adapted to (Σ ′ 0 , . . . , Σ ′ 2 n ), and a Σ ′ 2 i -measurable random variable X ′ 2 i for each i < n , such that (i) whenever i < n and | Y ′ 2 i ( ω ′ ) | < K then either | Y ′ 2 i +1 ( ω ′ ) | = K or | Y ′ 2 i +1 ( ω ′ ) | < K and | Y ′ 2 i +2 ( ω ′ ) | < K , (ii) Y ′ 0 , Y ′ 2 , . . . , Y ′ 2 n , X ′ 0 , X ′ 2 , . . . , X ′ 2 n − 2 have the same joint distribution as Y 0 , . . . , Y n , X 0 , . . . , X n − 1 . Proving the lemma: basic case Take n = 1, Σ 1 = Σ, Σ 0 = {∅ , Ω } , Y 0 = γ = E ( Y 1 ) where | γ | < K . Set Ω ′ = Ω × [0 , 1] with product measure µ ′ , domain Σ ′ 2 ; set Σ ′ 0 = {∅ , Ω ′ } , Y ′ 0 ( ω, t ) = Y 0 ( ω ) = γ , X ′ 0 ( ω, t ) = X 0 ( ω ), 2 ( ω, t ) = Y 1 ( ω ). Seek a partition ( G + , G − , H ) of Ω ′ such that Y ′ 2 dµ ′ = Kµ ′ G + , 2 dµ ′ = − Kµ ′ G − � � G + Y ′ G − Y ′ and H ⊆ F × [0 , 1] where F = { ω : | Y 1 ( ω ) | < K } . Then we can take Σ ′ 1 to have atoms G + , G − and H . D.H.Fremlin

  8. 8 Construction when n = 1, Σ 0 = {∅ , Ω } , Ω ′ = Ω × [0 , 1], | E ( Y 1 ) | < K , 2 ( ω, t ) = Y 1 ( ω ). Seek a partition ( G + , G − , H ) of Ω ′ such that Y ′ 2 dµ ′ = Kµ ′ G + , 2 dµ ′ = − Kµ ′ G + � � G + Y ′ G − Y ′ and H ⊆ F × [0 , 1] where F = { ω : | Y 1 ( ω ) | < K } . � ( α α α ) If E Y 1 ≥ KµE where E = Ω \ F , try G α = ( E × [0 , 1]) ∪ ( F × [0 , α ]) for α ∈ [0 , 1]. 2 dµ ′ ≥ Kµ ′ G α ; if α = 1, 2 dµ ′ < Kµ ′ G α ; so for a G α Y ′ G α Y ′ � � If α = 0, suitable α can take G + = G α , G − = ∅ . H G + α E F ( β β ) Similarly if � E Y 1 ≤ − KµE . β Measure Theory

  9. 9 Seek a partition ( G + , G − , H ) of Ω ′ such that 2 dµ ′ = Kµ ′ G + , 2 dµ ′ = − Kµ ′ G + � � G + Y ′ G − Y ′ and H ⊆ F × [0 , 1] where F = { ω : | Y 1 ( ω ) | < K } . γ ) If − KµE < � ( γ γ E Y 1 < KµE ; set E + = { ω : Y 1 ( ω ) ≥ K } , E − = { ω : Y 1 ( ω ) ≤ − K } , V α = ( E + × [0 , 1]) ∪ ( E − × [0 , α ]) for α ∈ [0 , 1]. 2 dµ ′ = Kµ ′ V α . Now set V α Y ′ � Then there is an α such that W β = ( E + × [ β, 1]) ∪ ( E − × [ αβ, 1]) for β ∈ [0 , 1]. W β Y ′ 2 = − Kµ ′ W β . Take � Then there is a β such that G + = ( E + × [0 , β [) ∪ ( E − × [0 , αβ [). G − = W β , β G - H α V G + α αβ E + E - F D.H.Fremlin

  10. 10 Vector-valued extensions? Lemma Let U be a Banach space. Sup- pose that (Ω , Σ , µ ) is a probability space, Σ 0 ⊆ . . . ⊆ Σ n are σ -subalgebras of Σ, ( Y 0 , . . . , Y n ) is a martingale of Bochner integrable U -valued functions adapted to (Σ 0 , . . . , Σ n ), and X i : Ω → [ − 1 , 1] is Σ i -measurable for each i < n . Then there are a probability space (Ω ′ , Σ ′ , µ ′ ), σ -subalgebras Σ ′ 0 ⊆ . . . ⊆ Σ ′ 2 n of Σ ′ , a U -valued Bochner martingale ( Y ′ 0 , . . . , Y ′ 2 n ) adapted to (Σ ′ 0 , . . . , Σ ′ 2 n ), and a Σ ′ 2 i -measurable random variable X ′ 2 i for each i < n , such that (i) whenever i < n and � Y ′ 2 i ( ω ′ ) � < K then either � Y ′ 2 i +1 ( ω ′ ) � = K or � Y ′ 2 i +1 ( ω ′ ) � < K and � Y ′ 2 i +2 ( ω ′ ) � < K , (ii) Y ′ 0 , Y ′ 2 , . . . , Y ′ 2 n , X ′ 0 , X ′ 2 , . . . , X ′ 2 n − 2 have the same joint distribution as Y 0 , Y 1 , . . . , Y n , X 0 , X 1 , . . . , X n − 1 . Theorem Let U be a Hilbert space. Suppose that ( Y 0 , . . . , Y n ) is a U - valued Bochner martingale adapted to (Σ 0 , . . . , Σ n ), and X i : Ω → [ − 1 , 1] is Σ i -measurable for each i < n . Set Z = � n − 1 i =0 X i × ( Y i +1 − Y i ). 1 Then Pr( � Z � ≥ M ) ≤ M 2 / 3 (1 + E ( � Y n � )) for every M > 0. Measure Theory

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend