stein fillings of homology spheres with planar open books
play

Stein fillings of homology spheres with planar open books . - PowerPoint PPT Presentation

. Stein fillings of homology spheres with planar open books . Takahiro Oba Tokyo Institute of Technology December 19, 2013 Nihon university 1 / 21 . Main Results (Roughly) . f : X 4 D 2 : PALF w/ planar fiber ( M 3 = X, ) :


  1. . Stein fillings of homology spheres with planar open books . Takahiro Oba Tokyo Institute of Technology December 19, 2013 Nihon university 1 / 21

  2. . Main Results (Roughly) . f : X 4 → D 2 : PALF w/ planar fiber ( M 3 = ∂X, ξ ) : contact boundary of X . Results . ∂X : homology sphere ? ⇝ ♯ { crit. pts of f } ( M, ξ ) : Stein fillable homology sphere ? ⇝ mapping class group ∃{ ( M n , ξ n ) } : infinite sequence of Stein fillable homology spheres w/ planar open books  M n ̸≈ M m ( n ̸ = m )  s.t. each Stein filling is a ”Mazur type mfd”  . 2 / 21

  3. . Main Results (Roughly) . f : X 4 → D 2 : PALF w/ planar fiber ( M 3 = ∂X, ξ ) : contact boundary of X . Results . ∂X : homology sphere ? ⇝ ♯ { crit. pts of f } ( M, ξ ) : Stein fillable homology sphere ? ⇝ mapping class group ∃{ ( M n , ξ n ) } : infinite sequence of Stein fillable homology spheres w/ planar open books  M n ̸≈ M m ( n ̸ = m )  s.t. each Stein filling is a ”Mazur type mfd”  . 2 / 21

  4. . The Plan of Talk . § 1 . Definitions and Background § 2 . Positive allowable Lefschetz fibrations (PALFs) § 3 . Main Results and Ideas of the proofs 3 / 21

  5. . § 1 . Definitions and Background . M : closed oriented 3-manifold, B : oriented link in M π : M \ B → S 1 : smooth map . Definition . ( B, π ) is called an open book (decomposition) if π is a fibration over S 1 s.t. π − 1 ( θ ) = Int F ( ∀ θ ∈ S 1 ) where F is a cpt. surf. whose boundary ∂F = ∂π − 1 ( θ ) is B . B is called a binding and F is called a page of ( π, B ) . . M \ Int νB ≈ ([0 , 1] × F ) / (1 , x ) ∼ (0 , φ ( x )) ( φ : monodromy) ⇝ We also denote ( F, φ ) to be an open book ( B, π ) . 4 / 21

  6. . § 1 . Definitions and Background . . Definition . A 2 -plane field ξ on M is called an (oriented) contact str. on M if ∃ α ∈ Ω 1 ( M ) s.t. . . 1 ξ = ker α . . 2 α ∧ dα > 0 . . Definition . An open book of ( M, ξ = ker α ) is called a supporting open book of ξ if . . 1 dα is an area form of the page of the open book . 2 α is positive on B . 5 / 21

  7. . § 1 . Definitions and Background . . Theorem (Giroux 2002) . { contact structure on M } / isotopy ↕ 1:1 { open book of M } / ”positive (de)stabilization” . F' F C ( F, ) ( F', ' t ) ○ C 6 / 21

  8. . § 1 . Definitions and Background . . Theorem (Loi-Piergallini 2001, Akbulut-Ozbagci 2001) . For ∀ ( M, ξ ) : Stein fillable contact manifold, ∃ ( F, φ ) : supporting open book of ξ s.t. φ has a positive fact. Conversely, for ∀ ( F, φ ) : open book of M s.t. φ has a positive fact., ∃ ξ : Stein fillable contact str. on M s.t. ξ is supported by ( F, φ ) . Furthermore, Stein filling = PALF . . . Theorem (Wendl 2010) . ξ is a Stein fillable contact structure on M supported by a planar open book. Then, the monodromy of this open book has a positive . factorization. 7 / 21

  9. . § 1 . Definitions and Background . . Problem . ( M, ξ ) : Stein fillable contact 3-mfd particularly homology sphere supported by a planar open book. Characterize the monodromy by a Stein filling of ( M, ξ ) . . 8 / 21

  10. . § 2 .Positive allowable Lefschetz fibrations (PALF) . . Definition . f : X 4 → D 2 is called a (positive) Lefschetz fibration (LF) if ∃{ b 1 , b 2 , . . . , b m } =: Crit( f ) ⊂ Int( D 2 ) s.t. . . 1 Crit( f ) is the set of critical values of f and for ∀ b i , ∃ ! p i ∈ f − 1 ( b i ) s.t. for ∀ p ∈ f − 1 ( b i ) \ { p i } f p : T p X → T f ( p ) D 2 : onto, d 2 f | f − 1 ( D 2 \ Crit( f )) is a fiber bundle over D 2 \ Crit( f ) . . . . 3 for ∀ p i (resp. ∀ b i ) ∃ ( z 1 , z 2 ) (resp. w ) : local cpx. coordinate of X (resp. D 2 ) s.t. w = f ( z 1 , z 2 ) = z 2 1 + z 2 2 . . 9 / 21

  11. . § 2 .Positive allowable Lefschetz fibrations (PALF) . . Definition . LF f : X → D 2 is a positive allowable LF (PALF) if regular fiber of f is bounded and any vanishing cycle is homologically-nontrivial. . 10 / 21

  12. . § 2 .Positive allowable Lefschetz fibrations (PALF) . . Definition . LF f : X → D 2 is a positive allowable LF (PALF) if regular fiber of f is bounded and any vanishing cycle is homologically-nontrivial. . 10 / 21

  13. . § 2 .Positive allowable Lefschetz fibrations (PALF) . Handle decomposition of PALF D n PALF f : X → D 2 w/ fiber D n and m crit.pts. X ≈ ( D 2 × D n ) ∪ ( ∪ m i =1 H (2) ) i ≈ H (0) ∪ ( ∪ n j =1 H (1) i =1 H (2) ) ∪ ( ∪ m ) j i H ( k ) : k -handle 2 -handles attached to D 2 × D n along van. cycles w/ − 1 -framing. 11 / 21

  14. . § 2 .Positive allowable Lefschetz fibrations (PALF) . First homology of the total space X C C C C n 1 2 n-1 D n { C 1 , C 2 , . . . , C n } : basis for H 1 ( D n ) H 1 ( X ) ∼ = H 1 ( D n ) / ⟨ γ 1 , γ 2 , . . . , γ m : van.cycles ⟩ [ γ i ] : ”homology class” of van. cycle γ i in H 1 ( D n ) [ γ i ] = ε i 1 C 1 + ε i 2 C 2 + · · · + ε in C n ( ε ij ∈ { 0 , 1 } , ∀ i ) To compute H 1 ( X ) , determine the SNF of (0 , 1) matrix A = ( ε ij ) . 12 / 21

  15. . § 2 .Positive allowable Lefschetz fibrations (PALF) . First homology of the total space X C C C C n 1 2 n-1 D n { C 1 , C 2 , . . . , C n } : basis for H 1 ( D n ) H 1 ( X ) ∼ = H 1 ( D n ) / ⟨ γ 1 , γ 2 , . . . , γ m : van.cycles ⟩ [ γ i ] : ”homology class” of van. cycle γ i in H 1 ( D n ) [ γ i ] = ε i 1 C 1 + ε i 2 C 2 + · · · + ε in C n ( ε ij ∈ { 0 , 1 } , ∀ i ) To compute H 1 ( X ) , determine the SNF of (0 , 1) matrix A = ( ε ij ) . 12 / 21

  16. . § 3 .Main Results . Suppose m ≥ n . X i 1 ,i 2 ,...,i n = ( D 2 × D n ) ∪ ( ∪ n k =1 H (2) i k ) : subhandlebody of X . Theorem (O.) . f : X → D 2 : PALF w/ fiber D n and m crit. pts. ∃ X i 1 ,i 2 ,...,i n ⊂ X s.t. H 1 ( X i 1 ,i 2 ,...,i n ) = 0 Then, ∂X :homology sphere ⇔ n = m . . Key Fact . 1 Y 4 = 0 -handle ∪ 2 -handles: 2 -handlebody . Q Y : intersection form of Y Then, Q Y = linking matrix determined by the diagram of Y . . . 2 If H 1 ( Y ) = 0 , ∂Y : homology sphere ⇔ Q Y : unimodular. . 13 / 21

  17. . § 3 .Main Results . Suppose m ≥ n . X i 1 ,i 2 ,...,i n = ( D 2 × D n ) ∪ ( ∪ n k =1 H (2) i k ) : subhandlebody of X . Theorem (O.) . f : X → D 2 : PALF w/ fiber D n and m crit. pts. ∃ X i 1 ,i 2 ,...,i n ⊂ X s.t. H 1 ( X i 1 ,i 2 ,...,i n ) = 0 Then, ∂X :homology sphere ⇔ n = m . . Key Fact . 1 Y 4 = 0 -handle ∪ 2 -handles: 2 -handlebody . Q Y : intersection form of Y Then, Q Y = linking matrix determined by the diagram of Y . . . 2 If H 1 ( Y ) = 0 , ∂Y : homology sphere ⇔ Q Y : unimodular. . 13 / 21

  18. . § 3 .Main Results . Idea of proof : Surgery on the cores of the 1 -handles of X : X ⇝ X ′ : 2 -handlebody surgered mfd X ′ satisfies: ( ) t A − I m H 1 ( X ′ ) = 0 , ∂X = ∂X ′ and Q X ′ = A O  = 1 if m = n  ⇝ | detQ X ′ | > 1 if m > n  ∴ ∂X : homology sphere ⇔ | detQ X ′ | = 1 ⇔ m = n □ 14 / 21

  19. . § 3 .Main Results . Using ˇ Zivkovi´ c’s classification of (0 , 1) matrices, we have the following corollaries. . Corollary (O.) . Suppose n ∈ { 1 , 2 , 3 , 4 } . f : X → D 2 : PALF w/ fiber D n and m crit. pts. Then, ∂X :homology sphere ⇔ n = m and H 1 ( X ) = 0 . . . Corollary (O.) . Suppose n ∈ { 1 , 2 , 3 , 4 } . ( M, ξ ) : Stein fillable and supported planar open book ( D n , φ ) X : Stein filling induced by positive fact. φ = t γ 1 t γ 2 · · · t γ m Then, M : homology sphere ⇔ n = m and H 1 ( X ) = 0 . . 15 / 21

  20. . § 3 .Main Results . Using ˇ Zivkovi´ c’s classification of (0 , 1) matrices, we have the following corollaries. . Corollary (O.) . Suppose n ∈ { 1 , 2 , 3 , 4 } . f : X → D 2 : PALF w/ fiber D n and m crit. pts. Then, ∂X :homology sphere ⇔ n = m and H 1 ( X ) = 0 . . . Corollary (O.) . Suppose n ∈ { 1 , 2 , 3 , 4 } . ( M, ξ ) : Stein fillable and supported planar open book ( D n , φ ) X : Stein filling induced by positive fact. φ = t γ 1 t γ 2 · · · t γ m Then, M : homology sphere ⇔ n = m and H 1 ( X ) = 0 . . 15 / 21

  21. . § 3 . Main Results . Application : We consider PALF X n ( n > 2) whose van. cycles are as follows; b b b b b 1 2 3 n-3 n-2 c 16 / 21

  22. To compute H 1 ( X n ) , determine the SNF of the following matrix:   1 1 0 0 0 0   0 1 1 · · · 0 0 0     0 0 1 0 0 0     . . ...  . .  . . .       0 0 0 1 1 0     0 0 0 · · · 0 1 1     0 0 0 0 0 1 ⇝ The SNF of this matrix is the identity matrix I n . ∴ H 1 ( X n ) = 0 By the theorem, ∂X n is a homology sphere. 17 / 21

  23. . § 3 . Main Results . . Definition . A cpt. conn. orientable 4-mfd X is Mazur type if . . 1 X : contractible . . 2 X = 0 -handle ∪ 1 -handle ∪ 2 -handle . . 3 ∂X ̸≈ S 3 . ~ ~ -(n-2) -n all framing -1 ⇝ π 1 ( X n ) = 1 and H ∗ ( X n ) = 0 ( ∗ > 0) By Hurewicz theorem and Whitehead theorem, X n is contractible. 18 / 21

  24. . § 3 . Main Results . ~ ~ -(n-2) 1 -n n-2 Casson invariant λ is Z -valued invariant of homology spheres. . Property of Casson invariant . λ ( S 3 ) = 0 ( surgery formula ) K ⊂ S 3 : knot, △ K ( t ) : Alexander poly. of K S 3 + 1 q K : 3-mfd obtained from 1 q surgery on K λ ( S 3 + 1 q K ) = q Then, 2 △ ′′ K (1) . . 19 / 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend