starting point multicomponent signals 1
play

Starting point : Multicomponent signals (1) L s ( t ) = a ( t ) - PowerPoint PPT Presentation

Starting point : Multicomponent signals (1) L s ( t ) = a ( t ) cos( ( t )) , t R Transform ee de Riesz multi- echelles et =1 a limage 1 Applications ` - Decomposition problem : extraction of the di ff erent


  1. Starting point : Multicomponent signals (1) � L s ( t ) = a ℓ ( t ) cos( ϕ ℓ ( t )) , t ∈ R Transform´ ee de Riesz multi-´ echelles et ℓ =1 a l’image 1 Applications ` - Decomposition problem : extraction of the di ff erent components ( IMF ℓ ). - Demodulation problem for a mode : estimation of the instantaneous amplitudes a ℓ ( t ), phases ϕ ℓ ( t ), and frequencies ϕ ′ ℓ ( t ). Val´ erie Perrier 0.15 IMF 1 0.1 0.1 Laboratoire Jean Kuntzmann IMF 2 IMF 3 0.05 Universit´ e de Grenoble-Alpes 0 0 − 0.1 − 0.05 − 0.1 − 0.2 4 6 8 10 2 4 6 8 10 time (s) − 3 − 3 Collaborateurs : Marianne Clausel, Sylvain Meignen, K´ evin Polisano (LJK), x 10 x 10 Bat echolocation call signal Laurent Desbat (TIMC-Imag) and Thomas Oberlin (IRIT, Toulouse) 1. Journ´ ee ” Temps-Fr´ equence et Non-Stationnarit´ e” , Marseille, 19 juin 2015 1 Decomposition/demodulation of signals in AM-FM modes 2 Starting point : Multicomponent signals (2) Multicomponent signal : � L � L s ( t ) = a ℓ ( t ) cos( ϕ ℓ ( t )) , t ∈ R s ( t ) = a ℓ ( t ) cos( ϕ ℓ ( t )) ℓ =1 ℓ =1 • a ℓ ( t ) cos( ϕ ℓ ( t )) : Intrinsec Mode Function ( IMF ℓ ), ( decomposition pb ). - Decomposition problem : extraction of the di ff erent components. • a ℓ : amplitude, ϕ ′ ℓ : instantaneous frequency ( demodulation pb ). - Demodulation problem for a mode : estimation of the instantaneous amplitudes a ℓ ( t ), phases ϕ ℓ ( t ), and frequencies ϕ ′ ℓ ( t ). The problem of finding the a ℓ , ϕ ℓ is ill-posed in general. Under suitable assumptions (separation of modes in Fourier domain, slowly variations of a ′ ℓ , ϕ ′ ℓ ..), several methods have been developed in the 90th by the wavelet community, based on reallocation 10 140 0 s 3 s 1 techniques in a time-frequency representation : − 10 120 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 t 2.5 5 100 s 1 0 - Reassignment method [Auger-Flandrin 1995] , frequency (Hz) 2 − 5 80 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 t - Squeezing method [Daubechies-Maes 1996] , s 2 2 1.5 60 s 2 0 - Wavelet ridges [Carmona-Hwang-Torr´ esani 1997, 1999] . − 2 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 40 t 2 20 0.5 Another point of view : s 3 s 3 0 − 2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 - Empirical Mode Decomposition (EMD) and Hilbert-Huang Transform t 0 0.2 0.4 0.6 0.8 1 Amplitude time (HHT) [Huang et al 1998] Academic multicomponent signal Review : SPM 2013, [Auger et al, SPM 2013] 2. ANR Astres 2013-2016 (coord. P. Flandrin)

  2. Motivation : Image decomposition/demodulation AM-FM Motivation : anisotropic texture analysis x ∈ R 2 f ( x ) = a ( x ) cos( ϕ ( x )) + f 1 ( x ) , - Decomposition problem : extraction of the di ff erent components. - Demodulation problem for a mode : estimation of the local amplitude a ( x ), phase ϕ ( x ), frequency ∇ ϕ ( x ). Texture with prescribed orientation Locally parallel textures [Polisano et al 2014] [Maurel-Aujol-Peyre 2011] Outline Outline Definitions Definitions 1 1 Hilbert transform and Analytic signal Hilbert transform and Analytic signal Riesz transform and Monogenic signal Riesz transform and Monogenic signal Computation of the Riesz Transform Computation of the Riesz Transform 2 2 via the Fourier domain via the Fourier domain via the Radon domain via the Radon domain In the direct space via a multiscale decomposition In the direct space via a multiscale decomposition Applications Applications 3 3 Local orientations from local Radon data Local orientations from local Radon data Decomposition/demodulation of Multicomponent Images Decomposition/demodulation of Multicomponent Images Conclusion Conclusion 4 4

  3. Hilbert transform and Analytic signal Riesz transform and Monogenic Signal [Felsberg-Sommer 2001] � � R 1 f • 2D (or n-D) : Riesz Transform ⃗ Rf = R 2 f • 1D : Hilbert Transform . Let f : R → R H f in time domain : ⃗ Rf in space domain : � � � 1 � 1 � � � � � � 1 f ( s ) 1 ( x i − y i ) H f ( t ) = π vp ∗ f ( t ) = lim t − s ds for a.e. t ∈ R . R i f ( x ) = lim ∥ x − y ∥ 3 f ( y ) d y t π ε → 0 | t − s | > ε π ε → 0 + ∥ x − y ∥ > ε H f in Fourier domain : � | ξ | � f ( ξ ) = − i sgn( ξ ) � ξ H f ( ξ ) = − i f ( ξ ) Rf in Fourier domain : � ∥ ξ ∥ � ⃗ ξ i R i f ( ξ ) = − i f ( ξ ), for i = 1 , 2. � f � (ˆ • Analytic signal (complex) : F ( t ) = f ( t ) + i H f ( t ) F = 0 on R − ) • Monogenic (quaternionique) signal : M f = = f + i R 1 f + j R 2 f ⃗ Rf AM-FM analysis : F ( t ) = A ( t ) e i ϕ ( t ) AM-FM analysis : M f = A ( x ) e ϕ ( x ) n θ ( x ) - Instantaneous amplitude : A ( t ) = | F ( t ) | - Local amplitude : A ( x ) = |M f ( x ) | - Instantaneous frequency : ω ( t ) = ϕ ′ ( t ) - Local frequency : ω ( x ) = ∇ ϕ ( x ) - Local orientation : θ ( x ) ( n θ = cos θ i + sin θ j ) • Example : f ( t ) = A cos( ω t ). Then H ( f ) = A sin( ω t ) and F ( t ) = Ae i ω t (link with the orientation of ∇ ϕ ( x ) ?) − → A ( t ) = A , ϕ ( t ) = ω t Monogenic signal Outline 0 1 Definitions 1 „ f « cos( ϕ ( x )) Hilbert transform and Analytic signal = A ( x ) e ϕ ( x ) n θ ( x ) = A ( x ) @ A M f = sin( ϕ ( x )) cos( θ ( x )) ⃗ Rf Riesz transform and Monogenic signal sin( ϕ ( x )) sin( θ ( x )) • Example : f ( x ) = A 0 cos( k · x ). Let k = ( k 1 , k 2 ), θ 0 = Arctan ( k 2 k 1 ). Computation of the Riesz Transform 2 Then � sin( k · x ) cos θ 0 � via the Fourier domain k R f ( x ) = A 0 = A 0 | k | sin( k · x ) sin( k · x ) sin θ 0 via the Radon domain In the direct space via a multiscale decomposition and ⎛ ⎞ � f ( x ) � cos( k · x ) Applications 3 ⎝ ⎠ = A 0 e ( k · x )(cos θ 0 i +sin θ 0 j ) M f ( x ) = = A 0 sin( k · x ) cos θ 0 Local orientations from local Radon data R f ( x ) sin( k · x ) sin θ 0 Decomposition/demodulation of Multicomponent Images Finally Conclusion A ( x ) = A 0 , ϕ ( x ) = k · x , θ ( x ) = θ 0 = Arctan ( k 2 / k 1 ) . 4

  4. Computation of the Riesz Transform (1) Computation of the Riesz Transform (2) • Via the Fourier domain : � | ξ | � R i f ( ξ ) = − i ξ i f ( ξ ), for i = 1 , 2. • Via the Radon domain [Felsberg 2002] Medical Scan : X-ray tomography Godfrey N. Hounsfield (ingenior in electronic) and Allan M. Cormack (mathematician) : Nobel Prize in Medicine 1979. Shepp and Logan phantom first component R 1 f second component R 2 f Fourier based Riesz computation : Involves a non local filtering (pb at frequency 0), Scan and illustration of its principle : X-ray taken around the patient. Requires the knowledge of the whole image , Computed using FFT , complexity : O ( N log 2 ( N )) Computation of the Riesz Transform (2) Computation of the Riesz Transform (2) • Inverse Radon transform : filtered back projection (FBP) • Radon Transform : � π �� + ∞ � f ( x ) = R − 1 ( R f ( θ , s )) = R θ f ( ω ) | ω | e 2 i πω ( x . ⃗ � θ ) d ω d θ 0 −∞ (where d R θ f denotes the 1D Fourier transform of R θ f . Remark : involves the non local ramp filter | ω | . • Original Radon-based Riesz formula [Felsberg 2002], [Soulard-Carr´ e 2012] Rf ( x ) = R − 1 �� � � ⃗ ⃗ HR ⃗ θ f θ ( x ) The Radon transform of function f ( x ) is measured on each detector of direction ⃗ θ = (cos θ , sin θ ) , corresponding to the mean of f along lines L θ , s of direction due to : θ ⊥ = ( − sin θ , cos θ ) : ⃗ � π �� + ∞ � � � � � + ∞ | ω | e 2 i πω ( x · ⃗ ⃗ � ⃗ θ ) d ω Rf ( x ) = R θ f ( ω )( − i )sign( ω ) θ d θ f ( s ⃗ θ + t ⃗ θ ⊥ ) dt R f ( θ , s ) = R θ f ( s ) = f ( x ) d ℓ = 0 −∞ L θ , s −∞ Remark : involves two non local operators : the Hilbert transform H and the inverse Radon transform R − 1 .

  5. Computation of the Riesz Transform (2) Computation of the Riesz Transform (2) • Interest : local Riesz transform from local Radon data • Local Radon-based Riesz formula [Desbat-P 2015] Since : �� + ∞ � � π R θ f ( ω )( − i ω ) e 2 i πω ( x · ⃗ � ⃗ θ ) d ω ⃗ Rf ( x ) = θ d θ 0 −∞ Then : � π � � Rf ( x ) = − 1 ∂ R f ⃗ θ , x · ⃗ ⃗ θ θ d θ 2 π ∂ s 0 Phantom and ROI Radon data Truncated Radon data Local ( R 1 f , R 2 f ) with NO ERROR Non local Radon based Riesz Local Radon based Riesz Computation of the Riesz Transform - In direct space (3) Computation of the Riesz Transform - In direct space (4) Monogenic Wavelet Transform - [Olhede-Metikas 2009], [Unser-VanDeVille 2009] • Pyramidale decomposition [Burt-Adelson 1983] • 2D directional CWT � � � ψ a , b , α ( x ) = 1 x − b c f ( a , b , α ) = R 2 f ( x ) ψ a , b , α ( x ) d x , a ψ r − α a If ψ is isotropic, ψ a , b , α = ψ a , b , 0 = ψ a , b . Denote c f ( a , b ) = c f ( a , b , 0). • Isotropic CWT of the monogenic signal F = M f = f + R 1 f i + R 2 f j | k a | � • Multiscale Riesz transform : in each band a , � ξ i R i f a ( ξ ) = − i f a ( ξ ) c F ( a , b ) = ( c f + c R 1 f i + c R 2 f j ) ( a , b ) − 1 ∂ f a → R i f ∼ 2 π k a ∂ x i • Monogenic Wavelet Transform ( ψ real isotropic) � c ( M ) ( a , b , α ) = R 2 f ( x ) ( M ψ ) a , b , α ( x ) d x f � � 1 0 c ( M ) c F ( a , b ) = ( a , b , α ) 0 − r α f → Complexity : linear ! [Wahdwa-Rubinstein-Durand-Freeman 2014] for video � Ae ( k · b ) n θ � • Example : F ( x ) = A e ( k · x ) n θ , c F ( a , b ) = a � ψ ( ak ) magnification

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend