star formation in alternative dark matter dwarfs then and
play

Star formation in alternative dark matter dwarfs: then and now Mark - PowerPoint PPT Presentation

CDM ETHOS ETHOS-CDM Star formation in alternative dark matter dwarfs: then and now Mark R. Lovell 1,2 , Jess Zavala 1 + ( 1 University of Iceland, 2 Durham, *lovell@hi.is) DOI:[ 10.1093/mnras/stz766 , 10.1093/mnras/sty818 ] Mark Lovell,


  1. CDM ETHOS ETHOS-CDM Star formation in alternative dark matter dwarfs: then and now Mark R. Lovell ⋆ 1,2 , Jesús Zavala 1 + ( 1 University of Iceland, 2 Durham, *lovell@hi.is) DOI:[ 10.1093/mnras/stz766 , 10.1093/mnras/sty818 ] Mark Lovell, HÍ/Durham University DOI:[ 10.1093/mnras/stz766 , 10.1093/mnras/sty818 ] DG-CQ:2019

  2. Power spectrum cutoff: low redshift 10 10 10 9 • ] M * [M O 10 8 X obs. 10 7 CDM 10 6 L 6 =10 L 6 =120 10 5 10 20 30 40 50 70 85 Lovell+2017 V 1kpc [km s -1 ] Mark Lovell, HÍ/Durham University DOI:[ 10.1093/mnras/stz766 , 10.1093/mnras/sty818 ] DG-CQ:2019

  3. Power spectrum cutoff: low redshift 10 10 10 9 M * >10 5 M O 120 • • ] M * [M O 10 8 100 X obs. 10 7 80 N(r<2Mpc) Obs. CDM 10 6 60 L 6 =10 L 6 =120 10 5 40 10 20 30 40 50 70 85 CDM Lovell+2017 V 1kpc [km s -1 ] L 6 =10 L 6 =120 20 0 1.5 2.0 2.5 3.0 3.5 M LG [10 12 M O • ] Mark Lovell, HÍ/Durham University DOI:[ 10.1093/mnras/stz766 , 10.1093/mnras/sty818 ] DG-CQ:2019

  4. Power spectrum cutoff: low redshift 10 10 10 9 M * >10 5 M O 120 • • ] M * [M O 10 8 100 X obs. 10 7 80 N(r<2Mpc) (1.4keV) Obs. CDM 10 6 60 L 6 =10 L 6 =120 10 5 40 10 20 30 40 50 70 85 CDM Lovell+2017 V 1kpc [km s -1 ] L 6 =10 L 6 =120 20 0 1.5 2.0 2.5 3.0 3.5 M LG [10 12 M O • ] Lovell+2012 Mark Lovell, HÍ/Durham University DOI:[ 10.1093/mnras/stz766 , 10.1093/mnras/sty818 ] DG-CQ:2019

  5. Power spectrum cutoff: low redshift How is halo/galaxy formation di ff erent at high redshifts? How about the oldest stars? 10 10 10 9 M * >10 5 M O 120 • • ] M * [M O 10 8 100 X obs. 10 7 80 N(r<2Mpc) (1.4keV) Obs. CDM 10 6 60 L 6 =10 L 6 =120 10 5 40 10 20 30 40 50 70 85 CDM Lovell+2017 V 1kpc [km s -1 ] L 6 =10 L 6 =120 20 0 1.5 2.0 2.5 3.0 3.5 M LG [10 12 M O • ] Lovell+2012 Mark Lovell, HÍ/Durham University DOI:[ 10.1093/mnras/stz766 , 10.1093/mnras/sty818 ] DG-CQ:2019

  6. The simulations • Full hydro, SF , supernova feedback • ETHOS model: self-interactions + dark acoustic oscillations • Particle mass: 1.76 × 10 6 Msun • Box size: 25Mpc/h • Run to z=6 } 7keV sterile neutrino Lovell+2018 Temperature map CDM ETHOS ETHOS-CDM Mark Lovell, HÍ/Durham University DOI:[ 10.1093/mnras/stz766 , 10.1093/mnras/sty818 ] DG-CQ:2019

  7. The simulations • Full hydro, SF , supernova feedback • ETHOS model: self-interactions + dark acoustic oscillations • Particle mass: 1.76 × 10 6 Msun • Box size: 25Mpc/h • Run to z=6 } 7keV sterile neutrino Lovell+2018 Temperature map CDM ETHOS ETHOS-CDM Mark Lovell, HÍ/Durham University DOI:[ 10.1093/mnras/stz766 , 10.1093/mnras/sty818 ] DG-CQ:2019

  8. The simulations • Full hydro, SF , supernova feedback • ETHOS model: self-interactions + dark acoustic oscillations • Particle mass: 1.76 × 10 6 Msun • Box size: 25Mpc/h • Run to z=6 } 7keV sterile neutrino Lovell+2018 Temperature map CDM ETHOS ETHOS-CDM Mark Lovell, HÍ/Durham University DOI:[ 10.1093/mnras/stz766 , 10.1093/mnras/sty818 ] DG-CQ:2019

  9. The simulations • Full hydro, SF , supernova feedback • ETHOS model: self-interactions + dark acoustic oscillations • Particle mass: 1.76 × 10 6 Msun • Box size: 25Mpc/h • Run to z=6 } 7keV sterile neutrino Lovell+2018 Temperature map CDM ETHOS ETHOS-CDM Mark Lovell, HÍ/Durham University DOI:[ 10.1093/mnras/stz766 , 10.1093/mnras/sty818 ] DG-CQ:2019

  10. ETHOS vs. CDM — change in DM mass / gas mass Bound DM mass 0.0 2.5 1.4 1.2 M DM,ETHOS /M DM,CDM 1.0 0.8 z=10 z=6 0.6 0.4 Matched pairs Median relations 0.2 0.0 10 8 10 9 10 10 10 11 Lovell+2019 M 200,X [M O • ] Mark Lovell, HÍ/Durham University DOI:[ 10.1093/mnras/stz766 , 10.1093/mnras/sty818 ] DG-CQ:2019

  11. ETHOS vs. CDM — change in DM mass / gas mass Bound DM mass 0.0 2.5 1.4 1.2 M DM,ETHOS /M DM,CDM Bound gas mass 1.0 2.5 0.8 z=10 z=6 0.6 2.0 z=10 0.4 z=6 Matched pairs M g,ETHOS /M g,CDM Median relations 0.2 1.5 0.0 10 8 10 9 10 10 10 11 1.0 Lovell+2019 M 200,X [M O • ] 0.5 0.0 0.0 10 8 10 9 10 10 10 11 M 200,X [M O • ] Mark Lovell, HÍ/Durham University DOI:[ 10.1093/mnras/stz766 , 10.1093/mnras/sty818 ] DG-CQ:2019

  12. ETHOS vs. CDM — change in DM mass / gas mass Bound DM mass 0.0 2.5 1.4 1.2 M DM,ETHOS /M DM,CDM Bound gas mass 1.0 2.5 0.8 z=10 SFR z=6 0.6 2.0 z=10 0.4 z=6 Matched pairs M g,ETHOS /M g,CDM Median relations 0.2 1.5 0.0 10 8 10 9 10 10 10 11 1.0 Lovell+2019 M 200,X [M O • ] 0.5 0.0 0.0 10 8 10 9 10 10 10 11 M 200,X [M O • ] Mark Lovell, HÍ/Durham University DOI:[ 10.1093/mnras/stz766 , 10.1093/mnras/sty818 ] DG-CQ:2019

  13. The galaxy population & reionisation Lovell+2018 Mark Lovell, HÍ/Durham University DOI:[ 10.1093/mnras/stz766 , 10.1093/mnras/sty818 ] DG-CQ:2019

  14. The galaxy population & reionisation Lovell+2018 Mark Lovell, HÍ/Durham University DOI:[ 10.1093/mnras/stz766 , 10.1093/mnras/sty818 ] DG-CQ:2019

  15. ETHOS vs. CDM — change in condensation time [t(M=10 8 M sun )] & oldest stellar populations z 18 15 12 10 9 8 7 6 600 600 600 All log(M 200,CDM /M O • )= [8,9] [9,10] t cond,ETHOS − t cond,CDM [Myr] t cond,ETHOS − t cond,CDM [Myr] 400 400 400 [10,11] 200 200 200 0 0 0 − 200 − 200 − 200 z= 6.0 R>0.90 − 400 − 400 − 400 200 300 400 500 600 700 800 900 1000 t cond [Myr] Lovell+2019 Mark Lovell, HÍ/Durham University DOI:[ 10.1093/mnras/stz766 , 10.1093/mnras/sty818 ] DG-CQ:2019

  16. ETHOS vs. CDM — change in condensation time [t(M=10 8 M sun )] & oldest stellar populations z 18 15 12 10 9 8 7 6 600 600 600 All log(M 200,CDM /M O • )= [8,9] z [9,10] t cond,ETHOS − t cond,CDM [Myr] t cond,ETHOS − t cond,CDM [Myr] 9 10 12 15 17 20 25 400 400 400 [10,11] 1.0 1.0 CDM 200 200 200 ETHOS 0.8 0.8 z=6, 0 0 0 t(z=0->z=6)= CDF(t age o/f.s. >t) 12.7Gyr − 200 − 200 − 200 0.6 0.6 z= 6.0 R>0.90 − 400 − 400 − 400 0.4 0.4 200 300 400 500 600 700 800 900 1000 t cond [Myr] Lovell+2019 log(M * /M O • )=[6.5,7.0], 0.2 0.2 M gas <0.1M * 0.0 0.0 300 400 500 600 700 800 900 t [Myr] Mark Lovell, HÍ/Durham University DOI:[ 10.1093/mnras/stz766 , 10.1093/mnras/sty818 ] DG-CQ:2019

  17. ETHOS vs. CDM — change in condensation time [t(M=10 8 M sun )] & oldest stellar populations z 18 15 12 10 9 8 7 6 600 600 600 All log(M 200,CDM /M O • )= [8,9] z [9,10] t cond,ETHOS − t cond,CDM [Myr] t cond,ETHOS − t cond,CDM [Myr] 9 10 12 15 17 20 25 400 400 400 [10,11] 1.0 1.0 X CDM 200 200 200 ETHOS 0.8 0.8 z=6, 0 0 0 t(z=0->z=6)= CDF(t age o/f.s. >t) 12.7Gyr − 200 − 200 − 200 0.6 0.6 z= 6.0 LG-oMSTO R>0.90 − 400 − 400 − 400 0.4 0.4 200 300 400 500 600 700 800 900 1000 t cond [Myr] Lovell+2019 log(M * /M O • )=[6.5,7.0], 0.2 0.2 M gas <0.1M * 0.0 0.0 300 400 500 600 700 800 900 t [Myr] Mark Lovell, HÍ/Durham University DOI:[ 10.1093/mnras/stz766 , 10.1093/mnras/sty818 ] DG-CQ:2019

  18. ETHOS vs. CDM — change in condensation time [t(M=10 8 M sun )] & oldest stellar populations z 18 15 12 10 9 8 7 6 600 600 600 All log(M 200,CDM /M O • )= [8,9] z [9,10] t cond,ETHOS − t cond,CDM [Myr] t cond,ETHOS − t cond,CDM [Myr] 9 10 12 15 17 20 25 400 400 400 [10,11] 1.0 1.0 X CDM 200 200 200 ETHOS X 0.8 0.8 z=6, 0 0 0 t(z=0->z=6)= CDF(t age o/f.s. >t) 12.7Gyr − 200 − 200 − 200 0.6 0.6 z= 6.0 LG-oMSTO R>0.90 LG-all obs. − 400 − 400 − 400 0.4 0.4 200 300 400 500 600 700 800 900 1000 t cond [Myr] Lovell+2019 log(M * /M O • )=[6.5,7.0], 0.2 0.2 M gas <0.1M * 0.0 0.0 300 400 500 600 700 800 900 t [Myr] Mark Lovell, HÍ/Durham University DOI:[ 10.1093/mnras/stz766 , 10.1093/mnras/sty818 ] DG-CQ:2019

  19. ETHOS vs. CDM — change in condensation time [t(M=10 8 M sun )] & oldest stellar populations z 18 15 12 10 9 8 7 6 600 600 600 All log(M 200,CDM /M O • )= [8,9] z [9,10] t cond,ETHOS − t cond,CDM [Myr] t cond,ETHOS − t cond,CDM [Myr] 9 10 12 15 17 20 25 400 400 400 [10,11] 1.0 1.0 X CDM 200 200 200 ETHOS X 0.8 0.8 z=6, 0 0 0 t(z=0->z=6)= CDF(t age o/f.s. >t) 12.7Gyr − 200 − 200 − 200 0.6 0.6 z= 6.0 LG-oMSTO R>0.90 LG-all obs. − 400 − 400 − 400 Apostle dwarfs 0.4 0.4 200 300 400 500 600 700 O 800 900 1000 t cond [Myr] Lovell+2019 log(M * /M O • )=[6.5,7.0], 0.2 0.2 M gas <0.1M * 0.0 0.0 300 400 500 600 700 800 900 t [Myr] Mark Lovell, HÍ/Durham University DOI:[ 10.1093/mnras/stz766 , 10.1093/mnras/sty818 ] DG-CQ:2019

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend