course on inverse problems
play

Course on Inverse Problems Albert Tarantola Lesson XII: - PowerPoint PPT Presentation

Institut de Physique du Globe de Paris & Universit Pierre et Marie Curie (Paris VI) Course on Inverse Problems Albert Tarantola Lesson XII: Optimization and Linear Problems Recall: We have seen that the posterior volumetric probability


  1. Institut de Physique du Globe de Paris & Université Pierre et Marie Curie (Paris VI) Course on Inverse Problems Albert Tarantola Lesson XII: Optimization and Linear Problems

  2. Recall: We have seen that the posterior volumetric probability for the model parameters, whose general expression is f post ( m ) = 1 ν f prior ( m ) g obs ( o ( m ) ) . becomes, using the Gaussian model for all uncertainties, f post ( m ) = k exp ( − S ( m ) ) , where the misfit function S ( m ) is the sum of squares -1 ( m − m prior ) 2 S ( m ) = ( m − m prior ) t C prior -1 ( o ( m ) − o obs ) + ( o ( m ) − o obs ) t C obs . What happens if the forward modeling relation o = o ( m ) is, in fact, linear?

  3. Linear problems: We have assumed the prior information cor- responds to a Gaussian distribution with mean m prior and co- variance C prior , and that the observations are described by a Gaussian distribution with mean o obs and covariance C obs . If the forward relation is linear, o = o ( m ) = O m , then, the posterior distribution in the model space is also a Gaussian distribution, with the following mean and covariance: prior ) -1 ( O t C -1 m post = ( O t C -1 obs O + C -1 obs o obs + C -1 prior m prior ) = m prior + ( O t C -1 prior ) -1 O t C -1 obs O + C -1 obs ( o obs − O m prior ) = m prior + C prior O t ( O C prior O t + C obs ) -1 ( o obs − O m prior ) C post = ( O t C -1 obs O + C -1 prior ) -1 = C prior − C prior O t ( O C prior O t + C obs ) -1 O C prior

  4. The posterior distribution in the observable parameter space is also Gaussian, with mean O m post and covariance O C post O t .

  5. Remark: The five elements of a linear inverse problem are m prior , C prior , o obs , C obs , and O . The expressions for m post and C post have been given in the slides above. What these expressions become if, in fact, we don’t have any a priori in- formation (and the forward relation o = O m is redundant)? C prior → ∞ I ; ( then m prior disappears ) m post = ( O t C -1 obs O ) -1 O t C -1 obs o obs C post = ( O t C -1 obs O ) -1 And if the matrix O is square and invertible? m post = O -1 o obs

  6. 4.2 Ray Tomography Using Blocks ❊①❡❝✉t❛❜❧❡ ♥♦t❡❜♦♦❦ ❛t ❤tt♣✿✴✴✇✇✇✳✐♣❣♣✳❥✉ss✐❡✉✳❢r✴⑦t❛r❛♥t♦❧❛✴❡①❡r❝✐❝❡s✴❝❤❛♣t❡r❴✵✹✴❘❛②❚♦♠♦❣r❛♣❤②✳♥❜ This exercise corresponds to a highly idealized version of an X-ray tomography experi- ment. A 2D medium is characterized by a parameter m ( x , y ) whose physical dimension is the inverse of a length. This parameter may take any real value (including negative values). Assume that when a ray R i is materialized in the medium (using a source and a receiver), we are able to measure the observable parameter o i = � R i d ℓ m ( x , y ) , (4.1) where ℓ is the length along the ray. The goal of the exercise is to use some observed values o i obs to infer the values of the function m ( x , y ) .

  7. ❊①❡❝✉t❛❜❧❡ ♥♦t❡❜♦♦❦ ❛t ❤tt♣✿✴✴✇✇✇✳✐♣❣♣✳❥✉ss✐❡✉✳❢r✴⑦t❛r❛♥t♦❧❛✴❡①❡r❝✐❝❡s✴❝❤❛♣t❡r❴✵✹✴❘❛②❚♦♠♦❣r❛♣❤②✳♥❜ 11 10 09 08 12 07 13 06 14 05 15 04 16 03 17 02 18 01 01020304 19 05060708 20 09101112 21 13141516 22 Figure 4.1: Geometry of the ‘X-ray experiment’. This drawing is at scale 1:1 (the length of the side of the blocks is 1 cm ). To simplify the problem, the medium is divided into blocks, numbered from 1 to 16 (see figure 4.1), so, instead of evaluating the function m ( x , y ) , we only need to evaluate

  8. the discrete values { m 1 , m 2 , . . . , m 16 } . With this discretization, the relation (4.1) becomes α = 16 o i = O i α m α ∑ , (4.2) α = 1 where O i α is the length of the ray i in the block α . We shall use 22 rays, so the index i runs from 1 to 22. For short, equation (4.2) shall be written o = O m . (4.3) With the geometry of the 16 blocks and the 22 rays represented in figure 4.1, it is easy to see that the matrix O is (only the nonzero elements are indicated)   − − − − − − − − − − − − − − − a − − − − − − − − − − − a − − a −  − − − − − − − a − − a − − a − −    − − − − − − − − − − − − a a a a   − − − − − − − − − − − − − a a a   − − − − − − − − − − − − − −  a a    a − − − − − − − − − − − − − − −   − − − b − − − b − − − b − − − b   − − b − − − b − − − b − − − b −    − b − − − b − − − b − − − b − −    − − − − − − − − − − − − O = b b b b , (4.4)   − − − − − − − − − − − − − − − a    − − − − − − − − − − − − − −  a a   − a − − − − a − − − − a − − − −   a − − − − a − − − − a − − − − a    − − − − a − − − − a − − − − a −    − − − − − − − − a − − − − a − −   − − − − − − − − − − − − − − − a   − − − − − − − − − − − −  b b b b   − − − − − − − − − − − −  b b b b   − − − − − − − − b b b b − − − − − − − − − − − − − − − − b b b b √ with a = 2 cm and b = 1 cm . In a real-life application, the components of the matrix O should be automatically com- ✭✯ ❚❤❡ ♠❛tr✐① ❖ ✐♥ t❤❡ ♦ ❂ ❖ ♠ r❡❧❛t✐♦♥ ✯✮ ❯♥♣r♦t❡❝t❬❖❪❀ ❖ ❂ ❚❛❜❧❡ ❬✵ ✱ ④✐✱✶ ✱✷✷⑥ ✱ ④❥ ✱✶ ✱✶✻⑥❪❀ sq✷ ❂ ❙qrt ❬✷❪❀ ❖❬❬✵✶ ✱✶✻❪❪ ❂ sq✷❀ ❖❬❬✵✷ ✱✶✷❪❪ ❂ sq✷❀❖❬❬✵✷ ✱✶✺❪❪ ❂ sq✷❀ ❖❬❬✵✸ ✱✵✽❪❪ ❂ sq✷❀❖❬❬✵✸ ✱✶✶❪❪ ❂ sq✷❀❖❬❬✵✸ ✱✶✹❪❪ ❂ sq✷❀ ❖❬❬✵✹ ✱✵✹❪❪ ❂ sq✷❀❖❬❬✵✹ ✱✵✼❪❪ ❂ sq✷❀❖❬❬✵✹ ✱✶✵❪❪ ❂ sq✷❀❖❬❬✵✹ ✱✶✸❪❪ ❂ sq✷❀ ❖❬❬✵✺ ✱✵✸❪❪ ❂ sq✷❀❖❬❬✵✺ ✱✵✻❪❪ ❂ sq✷❀❖❬❬✵✺ ✱✵✾❪❪ ❂ sq✷❀ ❖❬❬✵✻ ✱✵✷❪❪ ❂ sq✷❀❖❬❬✵✻ ✱✵✺❪❪ ❂ sq✷❀ ❖❬❬✵✼ ✱✵✶❪❪ ❂ sq✷❀ ❖❬❬✵✽ ✱✵✹❪❪ ❂ ✶❀❖❬❬✵✽ ✱✵✽❪❪ ❂ ✶❀❖❬❬✵✽ ✱✶✷❪❪ ❂ ✶❀❖❬❬✵✽ ✱✶✻❪❪ ❂ ✶❀ ❖❬❬✵✾ ✱✵✸❪❪ ❂ ✶❀❖❬❬✵✾ ✱✵✼❪❪ ❂ ✶❀❖❬❬✵✾ ✱✶✶❪❪ ❂ ✶❀❖❬❬✵✾ ✱✶✺❪❪ ❂ ✶❀

  9. with a = 2 cm and b = 1 cm . In a real-life application, the components of the matrix O should be automatically com- puted using the positions of the end-points of the ray, but —as writing the associated code is tedious— in this simple exercise, we can enter the components “by hand” as follows 1 ✭✯ ❚❤❡ ♠❛tr✐① ❖ ✐♥ t❤❡ ♦ ❂ ❖ ♠ r❡❧❛t✐♦♥ ✯✮ ❯♥♣r♦t❡❝t❬❖❪❀ ❖ ❂ ❚❛❜❧❡ ❬✵ ✱ ④✐✱✶ ✱✷✷⑥ ✱ ④❥ ✱✶ ✱✶✻⑥❪❀ sq✷ ❂ ❙qrt ❬✷❪❀ ❖❬❬✵✶ ✱✶✻❪❪ ❂ sq✷❀ ❖❬❬✵✷ ✱✶✷❪❪ ❂ sq✷❀❖❬❬✵✷ ✱✶✺❪❪ ❂ sq✷❀ ❖❬❬✵✸ ✱✵✽❪❪ ❂ sq✷❀❖❬❬✵✸ ✱✶✶❪❪ ❂ sq✷❀❖❬❬✵✸ ✱✶✹❪❪ ❂ sq✷❀ ❖❬❬✵✹ ✱✵✹❪❪ ❂ sq✷❀❖❬❬✵✹ ✱✵✼❪❪ ❂ sq✷❀❖❬❬✵✹ ✱✶✵❪❪ ❂ sq✷❀❖❬❬✵✹ ✱✶✸❪❪ ❂ sq✷❀ ❖❬❬✵✺ ✱✵✸❪❪ ❂ sq✷❀❖❬❬✵✺ ✱✵✻❪❪ ❂ sq✷❀❖❬❬✵✺ ✱✵✾❪❪ ❂ sq✷❀ ❖❬❬✵✻ ✱✵✷❪❪ ❂ sq✷❀❖❬❬✵✻ ✱✵✺❪❪ ❂ sq✷❀ ❖❬❬✵✼ ✱✵✶❪❪ ❂ sq✷❀ ❖❬❬✵✽ ✱✵✹❪❪ ❂ ✶❀❖❬❬✵✽ ✱✵✽❪❪ ❂ ✶❀❖❬❬✵✽ ✱✶✷❪❪ ❂ ✶❀❖❬❬✵✽ ✱✶✻❪❪ ❂ ✶❀ ❖❬❬✵✾ ✱✵✸❪❪ ❂ ✶❀❖❬❬✵✾ ✱✵✼❪❪ ❂ ✶❀❖❬❬✵✾ ✱✶✶❪❪ ❂ ✶❀❖❬❬✵✾ ✱✶✺❪❪ ❂ ✶❀

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend