course on inverse problems
play

Course on Inverse Problems Albert Tarantola First Lesson: - PowerPoint PPT Presentation

Princeton University Department of Geosciences Course on Inverse Problems Albert Tarantola First Lesson: Introduction to Inverse Problems The Bayes-Popper approach. Using observations to infer the values of some parameters cor- responds to


  1. Princeton University Department of Geosciences Course on Inverse Problems Albert Tarantola First Lesson: Introduction to Inverse Problems

  2. The Bayes-Popper approach. Using observations to infer the values of some parameters cor- responds to solving an inverse problem . Practitioners some- times seek the best solution implied by the data, but observa- tions should only be used to falsify possible solutions, not to deduce any particular solution.

  3. Name frequency Åland Albania Aleutian Islands Algeria American Samoa Andorra Angola . . . States, Territories, and Principal Islands of the World first digit Benford model actual statistics 1 . . . 2 3 4 5 6 7 8 9 0 400 300 200 Afghanistan 6 ,920,000 Sq. km 5 81 Sq. miles Population 6 36,267 1 ,505 2 8,748 1 7,666 2 ,381,745 1 97 4 65 1 ,246,700 . . . 2 45,664 1 1,097 3 5,460 6 ,821 9 19,354 7 6 1 80 4 81,226 . . . 1 5,551,358 2 2,000 2 ,590,600 6 ,730 1 8,250,000 3 0,600 100

  4. speed of light in vacuum 6 frequency 1 2 3 4 5 7 Benford model 8 9 80 60 40 20 actual statistics first digit . . . G = 6 .673(10) 10 -11 m 3 kg -1 s -2 Newtonian constant of gravitation Planck constant elementary charge . . . c = 2 99 792 458 m s -1 . . . h = 6 .626 068 76(52) 10 -34 J s CODATA recommended values of the fundamental physical constants = 4 .135 667 27(16) 10 -15 eV h = 1 .054 571 596(82) 10 -34 J s = 6 .582 118 89(26) 10 -16 eV e = 1 .602 176 462(63) 10 -19 C e / h = 2 .417 989 491(95) 10 14 A J -1 . . . 0

  5. 2 10 X = 10 x 0.2 0.5 0.1 1 2 5 20 1.5 50 100 -1 -0.5 0 0.5 1 x = log 10 X

  6. infinitely resisting wires infinitely conducting wires which is the distance between two electric wires? (spaces that represent physical qualities) physical quantities are coordinates over abstract spaces c = 1 c = 2 c = - 2 c = - 1 c = 0 r = - 1 r = - 2 r = 2 r = 1 r = 0 = | dc| space of electric wires: C = 1 S R = 1 Ω R = e Ω R = e 2 Ω R = 1/ e Ω = | dr| R = 1/ e 2 Ω C = 1/ e S C = 1/ e 2 S C = e S C = e 2 S given two wires W 1 and W 2 , which is the average wire? d l = | dR |/ R W 1 W 2 d l d l = | dC |/ C

  7. C8 - 4186.0 Hz - 238.89 µ s B7 - 3951.1 Hz - 253.10 µ s A7# - 3729.3 Hz - 268.15 µ s A7 - 3520.0 Hz - 284.09 µ s G7# - 3322.4 Hz - 300.98 µ s G7 - 3136.0 Hz - 318.88 µ s F7# - 2960.0 Hz - 337.84 µ s F7 - 2793.8 Hz - 357.93 µ s E7 - 2637.0 Hz - 379.22 µ s D7# - 2489.0 Hz - 401.76 µ s D7 - 2349.3 Hz - 425.65 µ s C7# - 2217.5 Hz - 450.97 µ s C7 - 2093.0 Hz - 477.78 µ s B6 - 1975.5 Hz - 506.19 µ s A6# - 1864.7 Hz - 536.29 µ s A6 - 1760.0 Hz - 568.18 µ s G6# - 1661.2 Hz - 601.97 µ s G6 - 1568.0 Hz - 637.76 µ s F6# - 1480.0 Hz - 675.69 µ s F6 - 1396.9 Hz - 715.86 µ s E6 - 1318.5 Hz - 758.43 µ s D6# - 1244.5 Hz - 803.53 µ s D6 - 1174.7 Hz - 851.31 µ s C6# - 1108.7 Hz - 901.93 µ s C6 - 1046.5 Hz - 955.56 µ s B5 - 987.77 Hz - 1012.3 µ s A5# - 932.33 Hz - 1072.5 µ s A5 - 880.00 Hz - 1136.4 µ s G5# - 830.61 Hz - 1203.9 µ s G5 - 783.99 Hz - 1275.5 µ s F5# - 739.99 Hz - 1351.4 µ s F5 - 689.46 Hz - 1431.7 µ s E5 - 659.26 Hz - 1616.9 µ s D5# - 622.25 Hz - 1607.1 µ s D5 - 587.33 Hz - 1702.6 µ s C5# - 554.37 Hz - 1803.9 µ s C5 - 523.25 Hz - 1911.1 µ s B4 - 493.88 Hz - 2024.8 µ s A4# - 466.16 Hz - 2145.2 µ s A4 - 440.00 Hz - 2272.7 µ s G4# - 415.30 Hz - 2407.9 µ s G4 - 392.00 Hz - 2551.0 µ s F4# - 369.99 Hz - 2702.7 µ s F4 - 349.23 Hz - 2863.5 µ s E4 - 329.63 Hz - 3033.7 µ s D4# - 311.13 Hz - 3214.1 µ s D4 - 293.66 Hz - 3405.2 µ s C4# - 277.18 Hz - 3607.7 µ s C4 - 261.63 Hz - 3822.3 µ s

  8. A musical note N can be characterized, for instance, by the frequency ν or by the period T . Which is the distance between two musical notes N 1 and N 2 ? | = | log T 1 D ( N 1 , N 2 ) = | log ν 1 | ν 2 T 2

  9. 33฀1/3 45

  10. Examples of Jeffreys quantities frequency ν = 1 period τ = 1 − τ ν wevelength λ = 1 wavenumber κ = 1 − κ λ temperature T = 1 thermodynamic parameter β = 1 − k β k T

  11. ρ = 10 g/cm 3 ρ = 20 g/cm 3 ρ = 0 r = 0 r = 0.5 r = 1 r = 1.5 r = log 10 ( ρ / ρ 0 ) ( ρ 0 = 1 g/cm 3 ) ∆ρ/ρ฀ constant ⇒ volumetric probability f ( ρ ) ∆ρ฀ constant ⇒ probability density f ( ρ ) _ ρ = 1 g/cm 3 ρ = 3.2 g/cm 3 ρ = 10 g/cm 3 ρ = 32 g/cm 3

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend