standard model physics at atlas lhc
play

Standard Model Physics at ATLAS/LHC S. Tokr Comenius Univ., - PowerPoint PPT Presentation

Standard Model Physics at ATLAS/LHC S. Tokr Comenius Univ., Bratislava On behalf of the ATLAS collaboration 30 August 2004 S. Tokar, HS 2004, Smolenice 1 Outline LHC and ATLAS performances (Parameters of LHC, ATLAS structure and


  1. Standard Model Physics at ATLAS/LHC S. Tokár Comenius Univ., Bratislava On behalf of the ATLAS collaboration 30 August 2004 S. Tokar, HS 2004, Smolenice 1

  2. Outline • LHC and ATLAS performances (Parameters of LHC, ATLAS structure and performances) • Higgs boson physics (very briefly) • Prospects of QCD at 14 TeV Multijets, top production, p.d.f. sensitive processes • Measurements for precision SM physics W and Top mass, constraints on Higgs mass via EW physics • Some top physics topics Single top production, spin effects, anomalous top couplings 30 August 2004 S. Tokar, HS 2004, Smolenice 2

  3. LHC (Large Hadron Collider) • pp collisions at √ s = 14 TeV • Bunch crossing: 25 ns • Low luminosity L= 20 fb -1 • High luminosity L= 100 fb -1 ( ≈ 10 34 cm -2 s -1 ) LHC is top,W,Z, … factory Process σ (mb) Ev./10fb -1 Large statistics for SM W → e ν 15 ~10 8 processes ⇒ Z → e + e − 1.5 ~10 7 • SM precision physics (EW, top-,b-physics, multijets…) 0.8 ~10 7 tt jets 100 ~10 9 • Big potential for new physics (Higgs,SuSy…) (p T >200 GeV) 30 August 2004 S. Tokar, HS 2004, Smolenice 3

  4. ATLAS performance Multi purpose particle detector (coverage up to | η |=5, L=10 34 cm -2 s -1 ) • Inner Detector σ ≈ ⋅ ⊕ p 0 05 . % p GeV ( ) 0 1 . % T T Tracking range | η |< 2.5 • EM Calorimetry σ ≈ ⊕ E 10 % E GeV ( ) 1 % η < Fine granularity up to 2 5 . • Hadronic Calorimetry σ ≈ ⊕ E 50 % E GeV ( ) 3 % η < Range: 4 9 . • Muon System σ − η < p ∼ 2 7 %, range: 2 7 . T Precision physics in | η |<2.5 Magnetic field : Lepton energy scale: 0.02% (Z → ll) 2T Solenoid + 3 air core toroids Jet energy scale: 1.0 % (W → jj) Luminosity precision ≤ 5% 30 August 2004 S. Tokar, HS 2004, Smolenice 4

  5. Higgs boson Production Production of SM Higgs: • Gluon fusion gg → H • Weak boson (W,Z) fusion qq q q H ′ ′ WBF: → • Top-quark associated gg, qq ttH → production • Weak boson associated production qq q q H ′ ′ → Channels for detection: H Z (*) Z (*) 4l, H γγ → → → H W +(*) W -(*) l l +p + - miss → → The cross sections for different H boson T production processes vs M H H τ τ + - ttH, H bb → → 30 August 2004 S. Tokar, HS 2004, Smolenice 5

  6. Higgs couplings To verify Higgs mechanism experimentally: • Higgs mass(es), spin, CP • Higgs widths and couplings to different particles: Hbb, Htt, H , HW W + - + − τ τ , HZZ, Hgg, H , HHH, γγ … Typical accuracies for couplings and widths : 20-30% 10% accuracy for HZZ, HWW couplings over W threshold Systematic errors contribute up to half the total error 5 σ discrepancy from SM up to Precision of Higgs boson couplings m A ≈ 300 GeV (MSSM) determination vs Higgs mass 30 August 2004 S. Tokar, HS 2004, Smolenice 6

  7. QCD measurements • The LHC physics is based on the interactions of quarks and gluons • Factorization : a convolution of partonic x-section and PDF’s: = ∑∫ σ µ µ σ µ µ ( ) 1 ( ) 2 ˆ dx dx F ( x , ) F ( x , ) ( ; s , ) 1 2 i 1 F j 2 F ij F R f • PDF’s are obtained from a global fit of DIS and DY data + DGLAP evolution to higher scales Q 2 → DGLAP splitting functions: theory is at NNLO. • Partonic x-section: perturbative expansion in α S ( LO, NLO, NNLO, …) • Scale choice : µ F = µ R = Q ⇐ typical process scale (usually set by invariant mass or p T of hard probe) � Problems: if two (or more) scales present in the hard scattering -expansion contains: ( α S L 2 ) n and ( α S L) n (L=ln(Q/Q 1 ) process → σ ˆ � Tools: DGLAP + BFKL evolution equations → resummations 30 August 2004 S. Tokar, HS 2004, Smolenice 7

  8. LHC Parton Kinematics 10 9 � Accurate measurements of QCD x 1,2 = (M/14 TeV) exp( ± y) 10 8 Q = M M = 10 TeV related processes at LHC will constrain the PDF’s. 10 7 10 6 M = 1 TeV � The kinematic acceptance of the LHC detectors allows a large range of 10 5 Q 2 (GeV 2 ) x and Q 2 to be probed 10 4 M = 100 GeV Processes to be studied: 10 3 � Multijet physics – test of pQCD, y = 6 4 2 0 2 4 6 10 2 M = 10 GeV dijet physics: constraints on PDF’s fixed 10 1 HERA � Drel-Yan processes , pp γ + − → Z , l l target ( ) q and q densities 10 0 10 -7 10 -6 10 -5 10 -4 10 -3 10 -2 10 -1 10 0 qq γ g → � Direct photon production x Values of x and Q 2 probed in the qg →γ q (sensitive to gluon density) production of an object (mass M, � Top and heavy quark (c,b) production rapidity y) at √ s=14 GeV 30 August 2004 S. Tokar, HS 2004, Smolenice 8

  9. t  t Production Cross Section Test of QCD predictions: top pair production (inclusive and differential x-sections) is an effective tool: • big m t ⇒ α S (m t )~0.1 ⇒ pExpansion converges rapidly • top decays before hadronization ⇒ spin of top is not diluted Theory for top X-section: NNLO-NNNLL ( Kidonakis et al., PRD68,114014 (2003) ) • Partonic Xsection:   α 2 µ µ ∞ 2 ( ) n s ( ) ∑ ∑ n σ = πα µ η ˆ ( , ) n k k η = − S 4 ( ) f ( )ln 1   i j S ij 2 2 m m 2 4m   = = n 0 k 0 Usual scale choice: µ F = µ R = µ ∈ (m t /2, 2m t ) or top p T A discrepancy may indicate a new physics! Progress at MC: radiative gluon corrections included: MCatNLO (Frixione et al, hep-ph/0311223) ATLAS: Statistical uncertainties < 1% → Systematics (Exp.& Theo.) will be dominant 30 August 2004 S. Tokar, HS 2004, Smolenice 9

  10. t  t Cross Section at 14TeV σ d dp total T NNLO: uncertainty from scale (m t /2, 2m t ) < 3% !!! (N.Kidonakis, hep-ph/0401147) 30 August 2004 S. Tokar, HS 2004, Smolenice 10

  11. Top Mass Measurement m top ≡ fundamental SM param. ( with m W consistency check of SM Higgs) Top samples (t → Wb): Dileton (W → l ν and W → l ν ), 4.9% Lepton+jets (W → l ν and W → jj ), 29.6% All jets (W → jj and W → jj ), 44.6% Lepton +jets channel Borjanovic et al., SN-ATLAS-2004-040 At prod. level: S/B=10 -5 Sel. cuts : ≥ ≥ miss p ( ) l 20GeV E , 20GeV T T ( ) ≥ > η ≤ ∆ = 4 jets p 40 GeV , 2 5 . , R 0 4 . T ⇒ S/B~78, 8700 tt events /10fb -1 ,2b-tag Invariant mass of jjb ⇒ (b-jets calibtrated using Z+b events, M W window used: ± 20 GeV ) 30 August 2004 S. Tokar, HS 2004, Smolenice 11

  12. Top mass in lepton + jets channel Mass uncertainty Source ∆ m(t)[GeV] light jet energy scale 0.2 • Statistics ~ 0.1 GeV b-jet energy scale 0.7 • Systematics ~ 1.3 GeV ISR 0.1 FSR 1.0 ⇒ b-fragmentation 0.1 Reduction of systematics (FSR, Combinatorial bkgd 0.1 b-jet energy scale) possible via Leptonic part - mass reconstructed via : full tt-bar reconstruction using ν = • missing transverse energy ( ) kinematic fit ⇒ miss E E T T • constraint m(l ν )=M W for neutrino p z Promising: l +J/ ψ channel •Strong correlation between m t & m(l,J/ ψ ) • BR=3.2 × 10 -5 (2700 ev/100fb -1 , sel. ε≈ 16%) • non-sensitive to jet energy, S/B ≈ 55 t → W + b, W + → l ν , b → J/ ψ X 30 August 2004 S. Tokar, HS 2004, Smolenice 12

  13. Top mass in other channels Dilepton channel Selection: 2 isolated leptons (p T >35,25 GeV) High missing E T ( > 40 GeV) 2 b-jets with p T > 25 GeV Neutrino momenta from: conservation laws, kinematic constraints Mass uncertainty: ∆ m stat+rec (t) = 0.3 GeV/c 2 , ∆ m sys (t) = 1.7 GeV/c 2 (pdf, b-fragmentation, b-jet scale, FSR) All jets channel Selection: ≥ 6jets with p T >40 GeV , ≥ 2 b-jets, Small missing E T S/B = 1/19 ⇒ Kinematic fit ( W + top mass constraints used) S/B = 6/1 ⇒ High PT subsample ( p T (t) > 200 GeV) → 3300 evts/10 fb -1 ⇒ S/B = 18/1 Mass uncertainty: ∆ m stat (t) = 0.2 GeV/c 2 , ∆ m sys (t) = 3 GeV/c 2 30 August 2004 S. Tokar, HS 2004, Smolenice 13

  14. W boson mass Present Status: ∆ M W = 0.033 GeV Selection: pp → W+X with W → l ν , l ≡ e, µ • Isolated charge lepton: p T > 25 GeV • missing transverse Energy: E > 25 GeV / T • Rejection of high p T W bosons Method: transverse mass is constructed: M T = 2p p (1-cos φ ) l ν ∆ W T T ∆ϕ ≡ angle (l, ν ) in transverse plane Position of Jacobian falling edge is sensitive to M W Sensitivity is reduced by detector smearing The process x-section at LHC is 30 nb (10 4 × LEP) → after selection and reconstruction 60 M W bosons are expected/ 10fb -1 . Precision of M W is limited by systematics ! ⇒ 30 August 2004 S. Tokar, HS 2004, Smolenice 14

  15. W mass precision Systematics comes mainly from MC modeling (physics, detector performance) Source ∆ M W /channel comments statistics < 2 MeV 60M W’s/year W width 7 MeV pdf < 10 MeV Recoil model 5 MeV Radiative decays < 10 MeV W p T spectrum 5 MeV Backgrounds 5 MeV Lepton identification 5 MeV Lepton E-p scale < 15 MeV Lepton E-p resolution 5 MeV Total < 25 MeV Per channel Combining channels (e, µ ) ⇒ ∆ M W ≈ 20 MeV Combining with CMS ∆ M W ≈ 15 MeV ⇒ Sample size: 10 fb -1 30 August 2004 S. Tokar, HS 2004, Smolenice 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend