neutralino dark matter update neutralino dark matter
play

NeutralinoDarkMatter:update NeutralinoDarkMatter:update - PowerPoint PPT Presentation

NeutralinoDarkMatter:update NeutralinoDarkMatter:update ondirectandindirectdetection ondirectandindirectdetection StefanoScopel http://newton.kias.re.kr/~scopel Outline ofthetalk


  1. Neutralino�Dark�Matter:�update� Neutralino�Dark�Matter:�update� on�direct�and�indirect�detection on�direct�and�indirect�detection Stefano�Scopel http://newton.kias.re.kr/~scopel

  2. Outline of�the�talk of�the�talk Outline � gaugino�non�universality�&�neutralino�mass � cosmological�lower�bound�on�m� χ from� WMAP � direct�searches � indirect�searches � � � � � � � � � � � � � � � � � � � � � � � � ≤ � χ �

  3. “ ����������������������������� γ γ γ γ �������������������������� �������������������� ”, N.�Fornengo,�L.�Pieri�and�S.�Scopel,� Phys.�Rev.�D�70,�103529�(2004) “ ������������������������������������������� ������������������������������������������� ����������� ”,��A.�Bottino,�F.�Donato,�N.�Fornengo,�S.� Scopel,�Phys.Rev.�D�70,�015005�(2004) “ ������������������������������������������ ”, A.� Bottino,�F.�Donato,�N.�Fornengo,�S.�Scopel,�Phys.Rev.D69,� 037302�(2004) “ ���������������������������������������������������� ������������������������������������������ ”,�A.�Bottino,� F.�Donato,�N.�Fornengo,�S.�Scopel,�Phys.�Rev.�D�68,�043506� (2003) “ ����������������������� ”, A.�Bottino,�N.�Fornengo,�S.� Scopel,�Phys.�Rev.�D�67,�063519�(2003)

  4. ������������� ������������� � The�neutralino�is�defined�as�the�lowest9mass� ~ ~ linear�superposition�of�bino� B ,�wino� W (3) and�the� ~ ~ two�higgsino�states� H 10,� H 20� : ~ ~ ~ ~ χ ≡ + + + ( 3 ) 0 0 a B a W a H a H 1 2 1 1 1 2 � neutral,�colourless,�only�weak9type�interactions � stable if�R9parity�is�conserved,�thermal�relic � non�relativistic�at�decoupling� → Cold�Dark�Matter� (required�by�CMB�data�+�structure�formation� models) � relic�density�can�be�compatible�with�cosmological observations: 0.095� ≤ � χ h 2� ≤ 0.131 → IDEAL�CANDIDATE�FOR�COLD�DARK�MATTER

  5. � Most�analysis�on�the�SUSY�model�assume�that gaugino soft�masses�unify�at�the�GUT�scale � Gaugino mass�unification�implies�a�lower�bound� on�the�neutralino mass: � However�the�assumption�of�gaugino�mass� unification�at�the�GUT�scale�might�not�be� justified�(for�instance,�the�gaugino�unification� scale�may�be�much�lower�than�the�standard� GUT�scale)

  6. Effective�MSSM�scheme�(effMSSM)�– – Independent� Independent� Effective�MSSM�scheme�(effMSSM)� parameters parameters • M 1� U(1) gaugino�soft� • m q soft�mass�common� ~ breaking�term to�all�squarks • M 2� SU(2)�gaugino�soft� ~ • m l soft�mass�common� breaking�term to�all�sleptons • � Higgs�mixing�mass� • A� common� parameter dimensionless�trilinear� • tan β ratio�of�two�Higgs� v.e.v.’s parameter�for�the� third�family� (A b =�A t� ≡ • m A�� mass�of�CP�odd�neutral� ~ ~ Higgs�boson�(the�extended� Am q ;�A τ ≡ Am l ) ~ ~ ~ Higgs�sector�of�MSSM� • R� ≡ M 1 /M 2 includes�also�the�neutral� scalars� h,�H,� and�the� charged�scalars� H ± ) SUGRA → R = 0.5

  7. Lower�limit�on�the�neutralino�mass�from Lower�limit�on�the�neutralino�mass�from R ≥ 36 GeV m χ �������!������������������������������

  8. 0.5

  9. Experimental�constraints Experimental�constraints � accelerators�data�on�supersymmetric�and�Higgs� boson�searches�(CERN�e + e 9 collider�LEP2�and� Collider�Detector�CDF�at�Fermilab) � measurements�of�the�� b → s γ decay � measurement�of�the�muon�anomalous�magnetic� moment a µ ≡ ( * µ - �� / � µ ⋅ ⋅ �� �� ≤ ���� ( τ +e�data� ⋅ ⋅ (we�use ���� ≤ � � µ µ µ combined) , M.�Davier�et�al.,�Eur.�Phys.�J.�C31� (2003)�503;�K.�Hagiwara�et�al.,�hep9ph/0312250) � B S → � + � - decay,�D.�Acosta� et�al.� (CDF� Collaboration),�PRL93,032001(2004),�V.M.�Abazov� et�al.�(D0�Collaboration),�PRL94,071802,(2005))

  10. → � S → � + � - + � - decay decay B S B � SUSY�contribution�strongly�enhanced�at�high� tan�β and�low� m A ( ∝ ( tan�β) 6 /m A 4) (C.�Bobeth,�T.�Ewerth,�F.�Kruger�and�J.�Urban,� PRD64(2001)�074014) � tan�β – enhanced�SUSY�QCD�corrections�to�b�Yukawa� coupling�included

  11. → � S → � + � - + � - decay decay B S B Excluded configurations � Strong�correlation�with�direct�detection�signals (S.�Baek,� Y.�G.�Kim,�P.�Ko,�JHEP�0502:067,2005;�S.�Baek,�D.�G.� Cerdeño,�Y.G.�Kim,�P.�Ko�and�C.�Muñoz,�hep9ph/0505019)

  12. Sign�of�b9 9>�s� >�s� γ γ amplitude amplitude Sign�of�b • the�measurement�of�B(B9>�X s� P P)�is�sensitive�to�the� sign�of�the�b�9>�s� γ amplitude�C 7 : • b�9>�s� γ decay depends on |C 7 | 2 •Belle�and�BABAR�data�favour�a�negative�sign�of�C 7�� (same�of� the�standard�model) ( Gambino,�Haisch,�Misiak,�PRL94,061803�(2005) ) •sizeable�SUSY�correction�(light�stop�and�chargino,�high� tan β)� can�drive�C 7 to�positive�values�compatible�to�BR(b�9>�s�γ)�but� potentially�in�conflict�with�B(B9>�X s P P) (not�in�SUGRA)

  13. Dark�matter�density�from�WMAP Dark�matter�density�from�WMAP • CMB�data,�used�in�combination�with�other�cosmological� observations,�are�narrowing�down�the�range�of�the�matter� abundance��S m h 2� and�some�of�its�constituents,�S ν h 2� and�S b h 2� : 0.095�<�� CDM h 2� <�0.131 (2�σ range) 0.095�<�� CDM h 2� <�0.131 •The�upper�bound� (7 CDM h 2 ) max�� establishes�a�strict�upper�limit�for� any�specific�cold�species •The�lower�bound� (7 CDM h 2 ) max� fixes� the�value�of�the�average� abundance�below�which�the�halo�density�of�a�specific�cold� constituent�has�to�be�rescaled�as�compared�to�the�total�CDM�halo density� Rescaling�factor: ξ ≡ ρ χ / ρ 0 ≡ min(1, 7 χ h 2 /(7 CDM h 2 ) min� ) ρ χ = local�neutralino�density;� ρ 0 = total�local�dark�matter�density

  14. Cosmological�lower�bound�on� m m χ Cosmological�lower�bound�on� (low m ) χ (low A ) m A scatter�plot:� full�calculation upper�bound�on� 7 CDM h 2 curve:�analytical� approximation�for minimal� 7 CDM h 2�

  15. Cosmological�lower�bound�on� m m χ Cosmological�lower�bound�on� ( m ) χ ( > 200 GeV ) m A A > 200 GeV scatter�plot:� full�calculation upper�bound�on� 7 CDM h 2 curve:�analytical� approximation�for minimal� 7 CDM h 2�

  16. The�bottom�line:�the�cosmological�lower�bound� on m χ depends�on�the�value�of� m A : � m χ >�6�GeV� for�light� m A � m χ >�22�GeV� for�heavy� m A (7 CDM h 2 ) max� =�0.3 (7 CDM h 2 ) max� =�0.131

  17. SEARCHES SEARCHES

  18. "����������������������� "����������������������� • Direct�searches.�Elastic�scattering�of� χ off�nuclei • Direct�searches.�Elastic�scattering�of� χ off�nuclei ( ∝ WIMP�local�density) ( ∝ WIMP�local�density) χ + ? → χ + ?� χ + ? → χ + ?� • Indirect�searches.�Signals�due�to χ 9 χ annihilations • Indirect�searches.�Signals�due�to χ 9 χ annihilations g g g g − − f f f f W + W - W + W - ZZ ZZ − − − → → ν , ν , γ, p , e + , d χ + χ HH, hh, AA, hH, hA, HA, H + H - HH, hh, AA, hH, hA, HA, H + H - W + H - , W - H + W + H - , W - H + Zh, ZH, ZA Zh, ZH, ZA � Annihilations�taking�place�in�celestial�bodies�where χ ’s� have�been�accumulated: ν ’s → up9going� µ ’s�from�Earth� and�Sun � Annihilations�taking�place�in�the�Halo�of�the�Milky�Way�or� that�of�external�galaxies: enhanced�in�high�density�regions ( ∝ (WIMP�density) 2 ) ⇒ Galactic center,�clumpiness

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend