spiral vortex flow in annular geometry with a radial
play

Spiral vortex flow in annular geometry with a radial temperature - PowerPoint PPT Presentation

Laboratoire de Mcanique, Physique et Gosciences Spiral vortex flow in annular geometry with a radial temperature gradient V. Lepiller 1 , F. Dumouchel, A. Prigent & I. Mutabazi 1 valerie.lepiller@univ-lehavre.fr Laboratoire de Mcanique,


  1. Laboratoire de Mécanique, Physique et Géosciences Spiral vortex flow in annular geometry with a radial temperature gradient V. Lepiller 1 , F. Dumouchel, A. Prigent & I. Mutabazi 1 valerie.lepiller@univ-lehavre.fr Laboratoire de Mécanique, Physique et Géosciences Université du Havre 25 rue Philippe Lebon 76 058 Le Havre cedex EUROMECH 2004

  2. Outline � Introduction � Previous works � Experimental setup � Results : 1. Fixed vertical cylindrical annulus with a radial temperature gradient 2. The Couette-Taylor system with a radial temperature gradient � Conclusion

  3. Introduction A radial temperature gradient imposed The circular Couette flow on the annular cylindrical geometry T 1 T 2 0 Azimuthal velocity V ( r ) Axial velocity W ( r ) Temperature Longitudinal Transverse T 1 T 2 T 1 T 2 stationary vortices oscillatory vortices ( Taylor vortices ) q c = 2.76, ω c = 15.25, with q c = 3.12, ω c = 0 Gr c =7974 for Pr = 7 T 1 = T 2 T 1 > T 2

  4. Motivation • Investigation of coupled Couette flow with a radial temperature gradient : coupling of buoyancy and centrifugal mechanisms.

  5. Introduction � Many applications : • industrial (chemical, automotive, nuclear) Cooling of rotating machinery like electrical motors and turbines Nuclear reactors isolation Clinical blood oxygenerators • environmental Oceanic and atmospheric circulation K.M. Becker & J. Kaye, Trans. ASME-J. Heat Transfer 84 , 97(1962) K.S. Ball, B. Farouk , J. Fluid Mech. 197 (1988) M. Auer, F. Busse & E. Gangler, Eur. J. Mechanics B/ Fluids 15 , 605(1996)

  6. Previous works � Many studies (experimental, theoretical, numerical) in the Couette-Taylor system • G.I. Taylor, Phil. Trans. Roy. Soc. London. Ser. A 223 , 289 (1923). • C.D. Andereck, S.S. Liu & H.L. Swinney , J.Fluid Mech. 164 , 155 (1986). • P. Chossat, G. Iooss , « The Couette-Taylor Problem » Springer-Verlag, Berlin (1994). • Ch. Egbers & G. Pfister , Physics of Rotating Fluids, Springer-Verlag (2000). •A. Goharzadeh & I. Mutabazi, Eur. Phys. J. B 19, 157-162 (2001).

  7. Previous works � Many numerical and theoretical studies for a fluid confined between two cylinders at rest, with a radial temperature gradient • I.G. Choi & S.A. Korpela, J.Fluid Mech. 99 (4), 725, (1980). • P. Le Quéré & J. Pécheux, J. Fluid Mech. 206 , 517 (1989) • J. Pécheux, P. Le Quéré & F. Abcha, Phys. Fluids 6 (10), 3247 (1994). • A. Bahloul, I. Mutabazi & A. Ambari, Eur. Phys. J. AP 9 , 253 (2000)

  8. Previous works � Few studies in the Couette -Taylor system with a radial temperature gradient : Experiments • K.M. Becker & J. Kaye , Trans. ASME-J. Heat Transfer 84 , 97 (1962). • H.A. Snyder & S.K.F. Karlsson, Phys. Fluids 7 (10), 1696 (1964). • K.S. Ball, B. Farouk & V.C. Dixit, J. Heat Mass Transfer 32 (8), 1517 (1989). • K.S. Ball & B. Farouk, Phys. Fluids A 1 (9), 1502 (1989). → Flow Visualization → Quite few quantitative data : diagram of primary bifurcation, wavenumber → Need for a more systematic investigation of different flow regimes when control parameters are changed.

  9. Previous works Theoretical and Numerical studies • J. Wallowit, S. Tsao & R.C. DiPrima, Trans. ASME-J. Appl. Mech . 86 , 595(1964). • K.S. Ball & B. Farouk, J. Fluid Mech. 197 , 479 (1988). • M.E. Ali & P.D. Weidman, J. Fluid. Mech. 220 , 53 (1990). • I. Mutabazi & A. Bahloul, Theor. Comp. Fluid Dyn. 16 , 79 (2002). → Main assumption : axisymmetric stationary or oscillatory modes, some terms were neglected, symmetry δ T → - δ T. → Recent work (M-B): relaxes the last assumption and takes into account the centrifugal buoyancy term.

  10. Experimental setup b = 2.5 cm z Ω Working fluid : demineralized water a =2 cm T 1 Water circulation c = 5 cm • Gap width : T 2 r d = b – a = 0.5 cm g He-Ne laser • Temperature difference imposed to the working liquid : ∆ T = 0.61*( T 1 – T 2 ) H = 57 cm Control parameters : • Geometrical parameters: Radius ratio : η = a / b = 0.8 Aspect ratio : Γ = H / d = 114 • Physical parameters: Prandtl number : Pr = τ κ / τ ν = ν / κ Reynolds number : Re = τ ν / τ a = Ω ad / ν Grashof number : Gr = W a d / ν avec W a = g α∆ Td 2 / ν Linear camera

  11. Results : Fixed vertical cylindrical annulus with a radial temperature gradient ∆ T > ∆ T c Large convection cell T 1 T 2 T 1 > T 2 a) b) ∆ T = 12.2°C ∆ T = 11°C Space-time diagrams for a pattern with T 2 = 27°C a) T 1 = 45°C, b) T 1 = 47°C

  12. Results : Fixed vertical cylindrical annulus with a radial temperature gradient T 1 = 48°C, T 2 = 27°C T 1 = 56°C, T 2 = 27°C ∆ T = 12.9°C ∆ T = 17.7°C Chaotic pattern Turbulent pattern

  13. Results : Fixed vertical cylindrical annulus with a radial temperature gradient � The pattern length l : 0,9 L= l / H 0,8 ♦ T 2 = 20°C 0,7 ■ T 2 = 23°C 0,6 ▲ T 2 = 25°C 0,5 Χ T 2 = 30°C Ж T 2 = 33°C 0,4 ∙ T 2 = 35°C 0,3 + T 2 = 37°C ▬ T 2 = 40°C 0,2 0,1 Gr 0 0 5000 10000 15000 20000 0 . 5 ( ) L L a Gr Gr ≈ + × − where a = a ( Gr c , T 2 , L c ) c c

  14. Results : Fixed vertical cylindrical annulus with a radial temperature gradient � The stability curve 3 ) Marginal stability curve for Pr = Gr (10 14 7 and η = 0.8 [Bahloul]: 12 q c = 2.76, ω c = 15.25, Gr c =7974 10 Experimental values of 8 wavenumber 6 q = 2.82 ± 0.15 4 2 0 0 1 2 3 4 q

  15. Results : Fixed vertical cylindrical annulus with a radial temperature gradient � Variation of the pattern frequency 4 f a T 2 3,5 19 20 3 23 2,5 25 27 2 30 33 1,5 35 1 37 40 0,5 Gr 0 0 2000 4000 6000 8000 10000 12000 14000 ⇒ Increase of the frequency with the Grashof number

  16. Results : Couette-Taylor system with a radial temperature gradient � Small ∆ T = 1.83°C Re z e) c) a) b) d) Growth of spiral vortex flow for T 1 = 27°C, T 2 = 30°C and a) Re ~ 33, b) Re ~ 34, c) Re ~ 36, d) Re ~ 40, e) Re ~ 41,5

  17. Results : Couette-Taylor system with a radial temperature gradient a) b) Space-time diagrams for a pattern when T 1 = 27°C, T 2 = 30°C, a) Re ~ 33 b) Re ~ 49

  18. Results : Couette-Taylor system with a radial temperature gradient � Moderate ∆ T = 3.06°C b) a) Space-time diagrams for a pattern when T 1 = 25°C, T 2 = 30°C, a) Re = 24.5 b) Re = 25.2

  19. Results : Couette-Taylor system with a radial temperature gradient � Critical parameters 3,5 120 q c Re c 3 100 2,5 80 2 60 1,5 40 1 20 0,5 Gr Gr 0 0 -2000 -1500 -1000 -500 0 500 1000 1500 2000 -2000 -1500 -1000 -500 0 500 1000 1500 2000 The radial heating destabilizes The radial heating increases the flow. the vortex size.

  20. Results : Couette-Taylor system with a radial temperature gradient • Following all the spiral vortex flow z m = 4 mirrors H. Litschke & K.G. Roesner, Exp. Fluids 24 , (1998) Visualization of spiral vortex A. Prigent & O. Dauchot, Phys. flow for T 1 = 28°C, T 2 = 30°C 2D camera Fluids 12 (10), 2688 (2000) and Re = 68

  21. Results : Couette-Taylor system with a radial temperature gradient � Inclination and propagation sense of vortex ∆ T < 0, Ω > 0 ∆ T > 0, Ω > 0 z b) Gr . Re > 0 a) Gr . Re < 0 Space-time diagrams and pictures of a pattern for T 2 = 30°C, a) T 1 = 27°C, Re ~ 49, b) T 1 = 32°C, Re ~ 59

  22. Results : Couette-Taylor system with a radial temperature gradient ∆ T < 0, Ω < 0 ∆ T < 0, Ω > 0 z b) Gr . Re < 0 a) Gr . Re > 0 Space-time diagrams and pictures of a pattern for a) T 1 = 27°C, T 2 = 28°C, Re = 91 , b) T 1 = 27°C, T 2 = 30°C , Re = 49

  23. Conclusion • We have performed an experimental investigation of the flow in the cylindrical annulus with a radial temperature gradient. • The radial temperature gradient induces spiral vortex flow. • When the cylinders are fixed, the pattern size increases with the control parameter and a chaotic regime occurs near the onset. • The discrepancy between experimental and linear stability critical parameters (Gr c ,q c , f c ) is due to the non-Boussinesq effects in experiment.

  24. Conclusion • In case of rotating inner cylinder, the pattern properties depend on the radial temperature gradient. We found that Re c and q c decrease with ∆ T . • For small ∆ T , the spiral pattern occurs near the bottom and increases in size with Re. • For moderate ∆ T , the spiral vortex flow occurs in the middle of the system before invading the whole system. • The spiral vortex inclination (helicity) depends on the sign of Gr . Re ~ ∆ T . Ω while the sense of propagation depends only on the Gr.

  25. Forthcoming work • PIV : measure of the velocity and vorticity fields • TLC (Thermochromic liquid crystals) : measure of temperature field in the gap • Stability analysis without the Boussinesq approximation.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend