deep borehole heat exchangers
play

Deep borehole heat exchangers Henrik Holmberg, Asplan Viak AS and - PowerPoint PPT Presentation

Deep borehole heat exchangers Henrik Holmberg, Asplan Viak AS and NTNU-Department of energy and process engineering. Seminar at KTH, Stockholm, 28.5.2015. Henrik.holmberg@ntnu.no Henrik.holmberg@asplanviak.no Layout: Background


  1. Deep borehole heat exchangers Henrik Holmberg, Asplan Viak AS and NTNU-Department of energy and process engineering. Seminar at KTH, Stockholm, 28.5.2015. Henrik.holmberg@ntnu.no Henrik.holmberg@asplanviak.no

  2. Layout: • Background – motivation • How to - Choice of collector ? • Results from simulations – coaxial BHE - Parametric study - Long term performance • Summary - Conclusions

  3. Background: • Numerical simulation (TRCM-models) of single borehole heat exchangers (within PhD- at NTNU) U-tube BHE Coaxial BHE 0 0 94 min -20 98 min -50 -40 104 min 120 min -60 -100 -80 Depth (m) Depth (m) -100 -150 -120 Exp,t=20.42 h -140 Exp,t=20.92 h Sim,t=19.76 h -200 -160 Sim,t=19.93 h Sim,t=20.1 h -180 Sim,t=20.42 h Sim,t=20.92 h -250 -200 8.5 9 9.5 10 10.5 11 11.5 12 12.5 0 1 2 3 4 5 6 7 8 9 10 Temperature ( o C) Temperature ( o C ) Simulation of thermal responstest Simulation of heat pump – coaxial (tube-in-tube) BHE operation – U-tube BHE Holmberg. H., Acuña. J., Næss. E., Sønju. K. O., Numerical model for non-grouted borehole heat exchanges, part 2-Evaluation. (2014) Accepted for publication, Geothermics

  4. BHE installations in Norway using 500 m boreholes: • Skoger skole, 5 x 500 m • Maudbukta – residental building (Asker), 9 x 500 m These systems use single U-tube collectors, (PEM50) – more on that later.. What is the motivation for these installations? - Scarcity of available land/ construction area - Heating dominated load - Deep soil layers - Increased heat extraction rate/ energy

  5. Temperature measurements in on-shore boreholes in Norway Source: NGU Report 2013.008, Evaluation of the deep Source: Slagstad et al. geothermal potential in Moss area, Østfold County. 2009

  6. How to – choice of collector- Results from simulation based on undisturbed temperature profile from 490 m deep borehole- continuous heat extraction 40 W/m for 50 hours Temperature ( o C) Temperature ( o C) 0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18 0 0 Parameter Value T-in -100 -100 T-out k g 3.53 W /m K Depth (m) Depth (m) -200 T-Undis -200 Active length BHE [m] 490 -300 -300 Borehole diameter 140 [mm] -400 -400 Collector (center pipe) 50 x 4.6 -500 -500 [mm] T-in a) U-tube BHE b) Coaxial BHE, inlet through center pipe Collector (outer pipe) 139 x 0.4 T-out [mm] T-Und Temperature ( o C) Temperature ( o C) data4 k c [W /m K] 0.42 0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18 0 0 k ins [W /m K] 0.1 Heat carrier Water -100 -100 Depth (m) Depth (m) Mass flow rate [kg / s] 1 -200 -200 Specific thermal load 40 [W /m] -300 -300 -400 -400 -500 -500 c) Coaxial BHE, inlet through annular space d) Coaxial BHE, insulated center pipe T Annular T Centerpipe Undisturbed temperature T Borehole wall a) U-tube BHE. b) Coaxial BHE, inlet through center pipe. c) Coaxial BHE, inlet through annular space. d) Coaxial BHE with lower thermal conductivity of the collector material (0.1 W/ m K)

  7. Choice of collector when extending the borehole depth. • Installation • Economics • Thermal performance • Hydraulic performance Do we need an thermally insulated center pipe? What temperatures can we get? How much energy can we get?

  8. Parametric study – Coaxial pipe-in-pipe BHE, influence of insulation of the center pipe. Thermal Hydraulic • Parametric study with the performance performance overall system performance (COP) as the objective • Varying center pipe wall total ))) thickness and mass flow rate. 1 total / max(COP 0.98 Finding: The system performance Normalized performance (COP (COP) is relatively insensitive to the 0.96 1.5 kg / s 2 kg / s center pipe wall thickness. 2.5 kg / s 0.94 3 kg / s 3.5 kg / s Increases with depth! 4 kg / s 0.92 4.5 kg /s 5 kg /s However.. Maximum 0.9 1 3 5 7 9 11 13 15 17 19 Heat extraction rate, directly Wall thickness (mm) related to mass flow rate!

  9. Temperature profiles in 800 m coaxial BHE 0 t=0.99 h -100 t=1.16 h t=1.33 h -200 t=4.83 h -300 Heat extraction Depth (m) t=32.83 h T-initial -400 q=50W/m -500 center pipe : 90 mm m=4kg /s x ins = 0.51 cm -600 x 5.1 mm -700 -800 6 8 10 12 14 16 18 20 22 24 Temperature ( o C) 0 -100 -200 t=0.99 h Thermal recharge -300 Depth (m) t=1.16 h t=1.33 h -400 t=4.83 h -500 t=32.83 h T-initial -600 q=-50W/m m=4kg /s -700 x ins = 0.51 cm -800 6 8 10 12 14 16 18 20 Temperature ( o C)

  10. Results from simulations – long term performance 16 ℄ center pipe z center pipe wall T inlet T outlet Mass flow rate r b 14 r T g ground T T in T out T in 12 out Mass flow rate (kg/s) o C) 10 Temperature ( T wall 8 outer pipe outer pipe wall 6 4 4 3 2 2 - Constant heat load 1 0 0 - Constant mass flow rate 0 0 10 10 20 20 30 30 40 40 50 50 60 60 70 70 80 80 90 90 100 100 Time (h) The BHE is simulated with a cyclic operation strategy using operation periods of 24 hours and a recovery period of 4 months. Total operation time/ year = 2900 hours ≈ 4 months Holmberg. H., Acuña. J., Næss. E., Sønju. K. O., Deep borehole heat exchangers, application to ground source heat pump systems, Proceedings World Geothermal Congress 2015, Melbourne, Australia. 19 -25 April 2015. - presented by Davide Rolando

  11. Parameters used in the simulation Table 1. Case specific parameters Parameter Value Value Value Active length BHE [m] 600 800 1000 Collector (center pipe) [mm] 75 x 4.3 90 x 5.1 90 x 3.5 Mass flow rate [kg / s] 3.5 4.0 5 Thermal load [W /m] 40 50 60 Pressure drop 1 [bar] 1.0 1.0 1.7 Pump power required 2 [kW] 0.47 0.53 1. 33 1 It is assumed that the annular space is confined within a smooth-walled outer pipe. 2 Assuming η pump =0.75. A relatively high mass flow rate is used – reduces need for thermal insulation The geothermal temperature gradient is constant at 20 K / km

  12. Long term simulation, 10 60 W / m 1000 m, Q=60 kW Yearly energy production 9 50 W /m 800 m, Q=40 kW 40 W / m 600 m, Q=24 kW 8 Depth (m) MWh th / year 600 70 7 Tf mean ( o C) 800 117 1000 175 6 5 4 3 2 0 2 4 6 8 10 12 14 16 18 20 Time (year)

  13. Distribution of specific heat load (W/m) Heat losses in the upper part of the borehole 0 0 0 0 0 100 hours 100 hours 100 hours 100 hours 100 hours -100 1000 hours 1000 hours 1000 hours 1000 hours -100 -100 -100 -100 2000 hours 2000 hours 2000 hours -200 5000 hours 5000 hours -200 -200 -200 -200 Year 5 3% 6% -300 0- 100 m -300 -300 -300 -300 22% Depth (m) 100 - 200 m Depth (m) Depth (m) Depth (m) Depth (m) 9% 200- 300 m -400 -400 -400 -400 -400 300 - 400 m 400 - 500 m -500 500 - 600 m -500 -500 -500 -500 11% 600- 700 m 700 -800 m -600 -600 -600 -600 -600 19% -700 -700 -700 -700 -700 14% -800 -800 -800 -800 -800 -20 0 20 40 60 80 100 16% -20 -20 -20 -20 0 0 0 0 20 20 20 20 40 40 40 40 60 60 60 60 80 80 80 80 100 100 100 100 Specific heat load (W /m) Specific heat load (W /m) Specific heat load (W /m) Specific heat load (W /m) Specific heat load (W /m) ≈ 70 % of the thermal energy from 400 – 800 depth Larger distance required between the lower part of the boreholes

  14. Deep BHEs in combination with shallow BTES.

  15. Ongoing project in Asker municipality

  16. Summary - conclusions • Due to higher temperature level in the borehole the deep BHEs can sustain a higher average specific heat load than conventional BHEs • Best performance with a relatively high mass flow rate – reduces need for thermal insulation • Most energy is extracted in the lower part of the borehole, making deep BHEs insensitive to thermal influence from neighboring BHEs (shallow or deep) in the upper part • The required energy for circulation of the heat carrier fluid in the cases shown is on the order of 1-2 % of the produced thermal energy and can be reduced using a larger borehole diameter • Deep BHEs are, therefore, a viable option for GSHP installations in areas with scarcity of space and negatively balanced loads.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend