highly integrated heat exchangers for automotive
play

Highly Integrated Heat Exchangers for Automotive Thermoelectric - PowerPoint PPT Presentation

www.DLR.de Chart 1 > Highly Integrated Heat Exchangers for Automotive TEG > M. Kober > 03.12.2013 Highly Integrated Heat Exchangers for Automotive Thermoelectric Generators (TEG) Methodical functional integration and numerical


  1. www.DLR.de • Chart 1 > Highly Integrated Heat Exchangers for Automotive TEG > M. Kober > 03.12.2013 Highly Integrated Heat Exchangers for Automotive Thermoelectric Generators (TEG) Methodical functional integration and numerical analysis of TEG heat exchangers Institut of Vehicle Concepts M. Kober H. Friedrich

  2. www.DLR.de • Chart 2 > Highly Integrated Heat Exchangers for Automotive TEG > M. Kober > 03.12.2013 Outline • Introduction • Methodical concept development acc. to VDI Guideline 2221 • Module structure used for functional integration • Comparison between three heat exchanger approaches • Numerical and analytic analysis with focus on • Fin buckling • Reduction of thermomechanical stress • Homogenisation of contact pressure

  3. www.DLR.de • Chart 3 > Highly Integrated Heat Exchangers for Automotive TEG > M. Kober > 03.12.2013 Evolution of TEG at DLR

  4. www.DLR.de • Chart 4 > Highly Integrated Heat Exchangers for Automotive TEG > M. Kober > 03.12.2013 Abgas Abgas Introduction heiß heiß Why use high temperature TE-Materials? n n p p - - + + - - + + • Comparison between Bithmuth Telluride and Skutterudite kalt kalt • Exemplarily Materials with zT max = 1 Kühlmittel Kühlmittel    U S T 55% 1,1 50% 1,0 𝑨𝑈 = 𝑇 2 ∗ 𝜏 45% 0,9 ∗ 𝑈 η_ Carnot 𝜆 40% 0,8 η_ ex Bi2Te3 η_ overall Bi2Te3 Efficiency η [%] 35% 0,7 𝜃 max = 𝜃 Carnot ∗ 𝜃 ex η_ ex CoSb3 Figure of Merit zT 30% 0,6 η_ overall CoSb3 zT Bi2Te3 25% 0,5 𝜃 Carnot = 𝑈 h − 𝑈 c zT CoSb3 20% 0,4 𝑈 h 15% 0,3 1 + 𝑨𝑈 𝑛 − 1 10% 0,2 𝜃 ex = 5% 0,1 1 + 𝑨𝑈 𝑛 + 𝑈 c /𝑈 h 0% 0,0 100 200 300 400 500 Hot Side Temperature T_h [ ° C]

  5. www.DLR.de • Chart 5 > Highly Integrated Heat Exchangers for Automotive TEG > M. Kober > 03.12.2013 Abgas Abgas Introduction heiß heiß Why use high temperature TE-Materials? n n p p - - + + - - + + • Higher efficiency at high temperatures mainly through kalt kalt higher Carnot efficiency • zTmax=1 leads to an exergy efficiency 𝜃 ex ~ 17% Kühlmittel Kühlmittel    U S T 55% 1,1 50% 1,0 𝑨𝑈 = 𝑇 2 ∗ 𝜏 45% 0,9 ∗ 𝑈 η_ Carnot 𝜆 40% 0,8 η_ ex Bi2Te3 η_ max Bi2Te3 Efficiency η [%] 35% 0,7 𝜃 max = 𝜃 Carnot ∗ 𝜃 ex η_ ex CoSb3 Figure of Merit zT 30% 0,6 η_ max CoSb3 zT Bi2Te3 25% 0,5 𝜃 Carnot = 𝑈 h − 𝑈 c zT CoSb3 20% 0,4 𝑈 h 15% 0,3 1 + 𝑨𝑈 𝑛 − 1 10% 0,2 𝜃 ex = 5% 0,1 1 + 𝑨𝑈 𝑛 + 𝑈 c /𝑈 h 0% 0,0 100 200 300 400 500 Hot Side Temperature T_h [ ° C] Cold Side Temperature T_c = 100 ° C

  6. www.DLR.de • Chart 6 > Highly Integrated Heat Exchangers for Automotive TEG > M. Kober > 03.12.2013 Abgas Abgas Introduction heiß heiß Why use high temperature TE-Materials? n n p p - - + + - - + + • Higher efficiency at high temperatures mainly through kalt kalt higher Carnot efficiency • zTmax=1 leads to an exergy efficiency 𝜃 ex ~ 17% Kühlmittel Kühlmittel    U S T 55% 1,1 50% 1,0 𝑨𝑈 = 𝑇 2 ∗ 𝜏 45% 0,9 ∗ 𝑈 η_ Carnot 𝜆 40% 0,8 η_ ex Bi2Te3 η_ max Bi2Te3 Efficiency η [%] 35% 0,7 𝜃 max = 𝜃 Carnot ∗ 𝜃 ex η_ ex CoSb3 Figure of Merit zT 30% 0,6 η_ max CoSb3 zT Bi2Te3 25% 0,5 𝜃 Carnot = 𝑈 h − 𝑈 c zT CoSb3 20% 0,4 𝑈 h 15% 0,3 1 + 𝑨𝑈 𝑛 − 1 10% 0,2 𝜃 ex = 5% 0,1 1 + 𝑨𝑈 𝑛 + 𝑈 c /𝑈 h 0% 0,0 100 200 300 400 500 Hot Side Temperature T_h [ ° C] Cold Side Temperature T_c = 100 ° C

  7. www.DLR.de • Chart 7 > Highly Integrated Heat Exchangers for Automotive TEG > M. Kober > 03.12.2013 Procedural method VDI Guideline 2221

  8. www.DLR.de • Chart 8 > Highly Integrated Heat Exchangers for Automotive TEG > M. Kober > 03.12.2013 List of requirements e.g. Vehicle boundary conditions DLR – test vehicle BMW 535i 3l, 6 cylinder, spark ignition 190kW @ 6600 1/min A B C installation space length 210mm 400mm 440mm width 290mm 170mm 270mm height 190mm 150mm 170mm 1) Kober, M. ; Häfele, C. ; Friedrich, H. E. (2012) Methodical Concept Development of Automotive Thermoelectric Generators (TEG). 3. International Conference 'Thermoelecrics goes Automotive', 2012, Berlin, Deutschland. λ

  9. www.DLR.de • Chart 9 > Highly Integrated Heat Exchangers for Automotive TEG > M. Kober > 03.12.2013 List of requirements e.g. Gas temperatures along exhaust system Volllast 126 g/s 1000 Full load 126 g/s 160 km/h, 6. Gear, 55 g/s 160 km/h, 6.Gang 55 g/s 145 km/h, 6.Gang 45 g/s 145 km/h, 6. Gear, 45 g/s 900 135 km/h, 6.Gang 39 g/s 135 km/h, 6. Gear, 39 g/s 120 km/h, 6.Gang 28 g/s 120 km/h, 6. Gear, 28 g/s 800 Exhaust gas temperatures [°C] 100 km/h, 6.Gang 23 g/s 100 km/h, 6. Gear, 23 g/s 70 km/h, X. Gear, 17 g/s 70 km/h, X.Gang 17 g/s 700 50 km/h, 5. Gear, 9 g/s 50 km/h, 5.Gang 9 g/s 600 500 400 300 200 100 1) 0 Gas temperatures along exhaust system at different steady state driving conditions with replaced NO x -catalyst. 1) Kober, M. ; Häfele, C. ; Friedrich, H. E. (2012) Methodical Concept Development of Automotive Thermoelectric Generators (TEG). 3. International Conference 'Thermoelecrics goes Automotive', 2012, Berlin, Deutschland.

  10. www.DLR.de • Chart 10 > Highly Integrated Heat Exchangers for Automotive TEG > M. Kober > 03.12.2013 Interactions of TEG and vehicle system electrical TEG input power   ( ) P cooling load ( ) P in co (el. power for cooling water pump and cooling fan)  P back pressure / cooling of exhaust rolling resistance ( ) ro  ( ) P (weight increase) pr

  11. www.DLR.de • Chart 11 > Highly Integrated Heat Exchangers for Automotive TEG > M. Kober > 03.12.2013 TEG concept development – Function structure exhaust + exhaust + heat heat feed heat dissipate exhaust transfer exhaust electric energy conduct distribute heat convert dissipate heat smoothly heat electric energy provide distribute contact conduct force pressure smoothly heat coolant + heat coolant feed dissipate heat to dissipate coolant coolant coolant 1) 1) Kober, M. ; Häfele, C. ; Friedrich, H. E. (2012) Methodical Concept Development of Automotive Thermoelectric Generators (TEG). 3. International Conference 'Thermoelecrics goes Automotive', 2012, Berlin, Deutschland.

  12. www.DLR.de • Chart 12 > Highly Integrated Heat Exchangers for Automotive TEG > M. Kober > 03.12.2013 TEG concept development – Sub-solutions sub-solutions sub-functions 1 2 3 4 5 6 7 feed/dissipate exhaust heat transfer conduct heat distribute heat smoothly dissipate electric energy conduct heat feed/dissipate coolant provide force distribute contact pressure 1) smoothly A2 E1 A4 B1 A3 A1 D1 C1 B2 A4 1) Kober, M. ; Häfele, C. ; Friedrich, H. E. (2012) Methodical Concept Development of Automotive Thermoelectric Generators (TEG). 3. International Conference 'Thermoelecrics goes Automotive', 2012, Berlin, Deutschland.

  13. www.DLR.de • Chart 13 > Highly Integrated Heat Exchangers for Automotive TEG > M. Kober > 03.12.2013 Overall system simulations Results for design point 135 km/h 1,0 A4 1,0 Legend: Design A4 0,5 Change in fuel consumption Change of fuel consumption [%] 0,0 Change of shaft power [%] Streckenverbrauchsänderung [%]. additional system Wellenleistungsänderung [%]  TEG as add on % F -0,5 A B C add -0,54 optimized total -0,79 -1,0 -0,95  vehicle system % F opt -1,5 -1,44 Effect on basic shaft power -2,0 -1,92 el. TEG input  % P   in   -2,5 Δ Δ Δ Δ back pressure  % P   Δ pr  Δ  Δ Δ -3,0 cooling load -2,98  % P   Δ Δ co   -3,5 Δ Δ rolling resistance  % P 1) ro -4,0 A B C 1) Kober, M. ; Häfele, C. ; Friedrich, H. E. (2012) Methodical Concept Development of Automotive Thermoelectric Generators (TEG). 3. International Conference 'Thermoelecrics goes Automotive', 2012, Berlin, Deutschland.

  14. www.DLR.de • Chart 14 > Highly Integrated Heat Exchangers for Automotive TEG > M. Kober > 03.12.2013 How can functional integration be done to reduce the TEG weight and thermomechanical stress? ? ?

  15. www.DLR.de • Chart 15 > Highly Integrated Heat Exchangers for Automotive TEG > M. Kober > 03.12.2013 Module structure (acc. to VDI 2221) for functional integration within heat exchangers

  16. www.DLR.de • Chart 16 > Highly Integrated Heat Exchangers for Automotive TEG > M. Kober > 03.12.2013 Module structure (acc. to VDI 2221) for functional integration within heat exchangers exhaust + exhaust + heat heat feed heat dissipate exhaust transfer exhaust electric energy conduct distribute heat convert dissipate heat smoothly heat electric energy provide distribute contact conduct force pressure smoothly heat coolant + heat coolant feed dissipate heat to dissipate coolant coolant coolant functional integration of thermal and mechanical functions within the hot gas heat exchanger

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend