spherical tokamak plasma science
play

Spherical Tokamak Plasma Science Comp-X General Atomics INEL - PowerPoint PPT Presentation

Supported by Columbia U Spherical Tokamak Plasma Science Comp-X General Atomics INEL Johns Hopkins U & Fusion Energy Development LANL LLNL Lodestar MIT Nova Photonics NYU ORNL PPPL PSI Martin Peng SNL UC Davis UC Irvine NSTX


  1. Supported by Columbia U Spherical Tokamak Plasma Science Comp-X General Atomics INEL Johns Hopkins U & Fusion Energy Development LANL LLNL Lodestar MIT Nova Photonics NYU ORNL PPPL PSI Martin Peng SNL UC Davis UC Irvine NSTX Program Director UCLA UCSD Oak Ridge National Laboratory U Maryland U Rochester @ Princeton Plasma Physics Laboratory U Washington U Wisconsin Culham Sci Ctr Hiroshima U HIST Kyushu Tokai U Niigata U Joint Spherical Torus Workshop and Tsukuba U U Tokyo US-Japan Exchange Meetings (STW2004) JAERI Ioffe Inst TRINITI KBSI 29 th September – 1 st October, 2004 KAIST ENEA, Frascati Kyoto University CEA, Cadarache IPP, Jülich Yoshida-Honmachi, Kyoto, Japan IPP, Garching U Quebec ST2004-9/29-10/1/04 ST Science & Fusion Energy

  2. Spherical Tokamak (ST) Offers Rich Plasma Science Opportunities and High Fusion Energy Potential • What is ST and why? • Scientific opportunities of ST • How does shape ( κ , δ , A …) determine pressure? • How does turbulence enhance transport? • How do plasma particles and waves interact? • How do hot plasmas interact with walls? • How to supply magnetic flux without solenoid? • Contributions to burning plasmas and ITER • Cost-effective steps to fusion energy • Collaboration ST2004-9/29-10/1/04 ST Science & Fusion Energy

  3. Tokamak Theory in Early 1980’s Showed Maximum Stable β T Increased with Lowered Aspect Ratio (A) • A. Sykes et al. (1983); F. Troyon et al. (1984) on maximum stable toroidal beta β T : β Tmax = C I p / a 〈 B 〉 ≈ 5 C κ / A q j ; 〈 B 〉 ≈ B T at standard A C ≈ constant (~ 3 %m·T/MA) ⇒ β N Plasma Z Cross 〈 B 〉 = volume average B ⇒ B T Section κ = b/a = elongation b a a A = R 0 /a = aspect ratio 0 R q I ≈ average safety factor R 0 I p = toroidal plasma current B T ≈ applied toroidal field at R 0 • Peng & Strickler (1986): What would happen to tokamak as A → 1? − How would β N , κ , q j , change as functions of A ? ST2004-9/29-10/1/04 ST Science & Fusion Energy

  4. ST Plasma Elongates Naturally, Needs Less TF & PF Coil Currents, Increases I p /aB T ⇒ Higher β Tmax Natural Elongation, κ Small Coil Currents/I p (q edge ~2.5) A = 1.5 A = 2.5 I TF / I p κ ≈ 2.0 κ ≈ 1.4 (~aB T / I p ) Z Σ I PF / I p κ 0 R R A ST Tokamak • Naturally increased κ ~ 2; I TF < I p , I PF < I p ⇒ higher I p ; lower device cost • Increased I p /aB T ~ 7 MA/m·T ⇒ β Tmax ~ 20%, if β N ~ 3 • Increased I p q edge /aB T ~ 20 MA/m·T ⇒ improved confinement? ST2004-9/29-10/1/04 ST Science & Fusion Energy

  5. Very Low Aspect Ratio (A) Introduces New Opportunities to Broaden Toroidal Plasma Science How does shape determine pressure? ST Plasmas Extends ST Plasmas Extends • Strong plasma shaping & self fields Toroidal Parameters Toroidal Parameters (vertical elongation ≤ 3, B p /B t ~ 1) • Very high β T (~ 40%), β N & f Bootstrap A = R/a can be ≥ 1.1 How does turbulence enhance transport? • Small plasma size relative to gyro-radius (a/ ρ i ~30–50) • Large plasma flow (M A = V rotation /V A ≤ 0.3) • Large flow shearing rate ( γ ExB ≤ 10 6 /s) How do plasma particles and waves interact? • Supra-Alfvénic fast ions (V fast /V A ~ 4–5) 2 ~ 50) • High dielectric constant ( ε = ω pe 2 / ω ce How do plasmas interact with walls? • Large mirror ratio in edge B field (f T → 1) • Strong field line expansion How to supply mag flux without solenoid? START – UKAEA Fusion • Small magnetic flux content (~ l i R 0 I p ) ST2004-9/29-10/1/04 ST Science & Fusion Energy

  6. ST Research Is Growing Worldwide Concept Exploration (~0.3 MA) Proof of Principle (~MA) Pegasus (US) HIT-II (US) MAST (UK) NSTX (US) Globus-M Pegasus MAST HIT-II Proto-Sphera TS-3,4 START SUNLIST HIT-I NSTX TST-M CDX-U HIST, LATE Rotamak-ST ETE CDX-U (US) Globus-M (RF) ETE (B) TS-3 (J) TS-4 (J) TST-2 (J) SUNIST (PRC) HIST (J) ST2004-9/29-10/1/04 ST Science & Fusion Energy

  7. Pegasus Explores ST Regimes As Aspect Ratio → 1 ST2004-9/29-10/1/04 ST Science & Fusion Energy

  8. NSTX Exceeded Standard Scaling & Reached Higher I p /aB T , Indicating Better Field and Size Utilization • Verified very high beta CTF β requirement well within stability prediction ⇒ new physics: Limits, without using active control 2 ≤ 38% β T = 2 µ 0 〈 p 〉 / B T0 β N = β T / (I p /aB T0 ) ≤ 6.4 DEMO β N = 6 〈β〉 = 2 µ 0 〈 p 〉 / 〈 B 2 〉 ≤ 20% • Obtained nearly sustained plasmas with neutral beam and bootstrap current alone CTF – Basis for neutral beam sustained ST CTF at Q~2 – Relevant to ITER hybrid mode optimization • To produce and study full non- inductive sustained plasmas – Relevant to DEMO Columbia U, LANL, PPPL ST2004-9/29-10/1/04 ST Science & Fusion Energy

  9. Detailed Measurements of Plasma Profiles Allows Physics Analysis and Interpretations Plasma Flow Shearing Rate up to ~10 6 /s ST2004-9/29-10/1/04 ST Science & Fusion Energy

  10. Strong Plasma Flow (M A =V φ /V Alfvén ~0.3) Has Large Effects on Equilibrium and Stability Equilibrium Reconstruction • Internal MHD modes with Flow stops growing pressure surfaces 2 magnetic surfaces • Pressure axis shifts out by ~10% of outer minor radius 1 • Density axis shifts by ~20% Z(m) 107540 0 T e (keV) 1.4 330ms 1.2 1.0 0.8 -1 n e (m -3 ) 0.6 4x10 19 0.4 M A 0.2 0.0 -2 0.4 0.6 0.8 1.0 1.2 1.4 R(m) 0.5 1.0 1.5 2.0 R(m) Columbia U, GA, PPPL, U Rochester ST2004-9/29-10/1/04 ST Science & Fusion Energy

  11. High-Resolution CHERS, SXR, and In-Vessel B R and B P Sensors Reveal Strong Mode-Rotation Interaction In-vessel sensors measure SXR shows rotating 1/1 rotating mode as v φ decays mode during v φ decay before mode locking CHarge-Exchange Recom- bination Spectroscopy (CHERS) shows v φ collapse preceding β collapse Aliased n=1 rotating mode 1/1 Island Sabbagh, Bell, Menard, Stutman RWM, NTM, 1/1 modes, and rotation physics of high interest to ITER ST2004-9/29-10/1/04 ST Science & Fusion Energy

  12. Active Control Will Enable Study of Wall Mode Interactions with Error Fields & Rotation at High β T Resistive Wall Mode Growth Rate (s -1 ) Vacuum Vessel Conducting Plates Internal Sensors Columbia U, GA, PPPL ST2004-9/29-10/1/04 ST Science & Fusion Energy

  13. Global and Thermal τ E ’s Compare Favorably with Higher A Database 120 0.10 H-mode x2.5 L-mode <thermal> (ms) 80 x1.5 τ E<mag> [s] 0.05 40 τ E 0 0.00 0 40 80 120 0.00 0.01 0.02 0.03 0.04 0.05 <ITER-H98p(y,2)> (ms) τ E τ E<ITER-97L> [s] • Compare with ITER scaling for total • TRANSP analysis for thermal confinement, including fast ions confinement L-modes have higher non-thermal component and comparable τ E ! Why? Bell, Kaye, PPPL ST2004-9/29-10/1/04 ST Science & Fusion Energy

  14. Ion Internal Transport Barrier in Beam-Heated H-Mode Contrasts Improved Electron Confinement in L-Mode iITB? Kinetic Profile Local Error Sampling Transport Barrier region where χ i ~ χ i NC Regions requiring and improved χ e >> χ i data resolution iITB? Axis Edge But L-mode plasmas show improved electron confinement! Why? L-mode H-mode n e (10 13 /cm 3 ) T e (keV) L-mode Magnetic Axis H-mode Columbia U, Culham, ORNL, PPPL ST2004-9/29-10/1/04 ST Science & Fusion Energy

  15. Transport Analysis of NSTX Plasmas Using TRANSP Confirms This Contrast • χ e >> χ i ~ χ NCLASS in most H-mode • χ e ~ χ i in L-mode • Diagnostic Resolution improvements continue L-mode ST2004-9/29-10/1/04 ST Science & Fusion Energy

  16. Analysis Shows Stability to Modes at Ion Gyro-Scale & Strong Instability at Electron Gyro-Scale (H-Mode) Emissivity (mW/cm 3 ) Core Transport In ion confinement MHD event Physics zone Ne 8,9+ • χ ion ~ χ neoclassical Thermal Conductivity • χ elec >> χ ion Impurity • D imp ~ D neoclassical R (cm) Diffusivity ) s m ( t Micro- • Driven by T and n Ne puff gradients instability iITB? calculations • k θ ρ i < 1 (ion gyro- scale) stable or suppressed by V φ shear • k θ ρ i >> 1 (electron gyro-scale) strongly unstable Cadarache, JHU, PPPL, U. Maryland ST2004-9/29-10/1/04 ST Science & Fusion Energy

  17. A Broad Spectrum of Energetic Particle Driven Modes is Seen on NSTX Do these Alfvén Eigenmodes (AEs) and fish-bones (f.b.s) Interact to expel energetic particles? 108170 1000 FREQUENCY (kHz) CAE/GAE TAE 100 “Fish-Bones” 10 0.1 0.2 0.3 TIME (s) PPPL ST2004-9/29-10/1/04 ST Science & Fusion Energy

  18. TAE’s, “Fish-Bones,” and shot 108530 0.8 Plasma Current (MW) CAE/GAE’s Can Interact to 0.4 4 Pnbi (MW) Expel Energetic Particles 0.0 0 0.0 0.1 0.2 0.3 0.4 1.0 H-alpha (a.u.) (I p = 0.65 MA, P b = 3.6 MW, β T = 10%) Synchronous sudden activities of 0.0 1.0 Neutrons (1014/s) • Edge D α rises; D-D neutron drops • Fish-bone modes rises 0.0 • TAE mode crashes f.b. 10- 40 kHz 10 3 • Separately, asynchronous drops of f.b. 10 2 and CAE modes 10 1 10 2 • So far observed for β T ≤ 10% and I p ≤ rms(B) ~ 10 1 700 kA ⇒ high- β effects? 10 0 CAE 500 - 1500 kHz • NPA measured depletion for 50-80 kV at 10 -1 10 3 higher β T – MHD (m/n=4/2) induced? 10 2 • Nonlinear effects relevant to lower β 10 1 burning plasmas ( ITER ) TAE 70 - 150 kHz 10 0 0.20 0.25 0.30 TIME (s) PPPL ST2004-9/29-10/1/04 ST Science & Fusion Energy

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend