spectrum in gross pitaevskii turbulence
play

Spectrum in Gross-Pitaevskii turbulence . . . . . Kyo Yoshida - PowerPoint PPT Presentation

Workshop on New Perspectives in Quantum Turbulence: experimental visualization and numerical simulation Nagoya . . Spectrum in Gross-Pitaevskii turbulence . . . . . Kyo Yoshida University of Tsukuba 11th Dec, 2014 Kyo Yoshida


  1. Workshop on New Perspectives in Quantum Turbulence: experimental visualization and numerical simulation Nagoya . . Spectrum in Gross-Pitaevskii turbulence . . . . . Kyo Yoshida University of Tsukuba 11th Dec, 2014 Kyo Yoshida (University of Tsukuba) Spectra in GP turbulence 11th Dec, 2014 1 / 25

  2. Table of contents . .. Quantum fluid (Introduction) 1 . .. Closure Approximation 2 Kyo Yoshida (University of Tsukuba) Spectra in GP turbulence 11th Dec, 2014 2 / 25

  3. . .. Quantum fluid (Introduction) 1 . .. Closure Approximation 2 Kyo Yoshida (University of Tsukuba) Spectra in GP turbulence 11th Dec, 2014 3 / 25

  4. Quantum field equation Hamiltonian of interacting bosonic fields ( 4 He, Rb etc.) ˆ ψ ( x , t ) ψ † � 2 � � ψ + g � 2 m ∇ 2 ˆ ψ † ˆ ψ † ˆ ψ † ˆ − ˆ ψ − µ ˆ ˆ ψ ˆ ˆ H = d x ψ 2 µ : chemical potential, g : coupling constant Heisenberg equation � � 2 i � ∂ ˆ � ψ 2 m ∇ 2 + µ ψ † ˆ ψ + g ˆ ˆ ψ ˆ ∂t = − ψ ψ = ψ + ˆ ˆ ψ := � ˆ ψ ′ , ψ � Order parameter ψ ( x , t ) ψ � = 0 for temperature T < T c . The order parameter contains information of superfluid component or Bose-Einstein condensate. Kyo Yoshida (University of Tsukuba) Spectra in GP turbulence 11th Dec, 2014 4 / 25

  5. Gross-Pitaevskii equation The order parameter ψ ( x ) ( x := { x , t } ) obeys Gross-Pitaevskii (GP) equation ∂tψ ( x ) = − � 2 i � ∂ 2 m ∇ 2 ψ ( x ) − µψ ( x ) + g | ψ ( x ) | 2 ψ ( x ) . Transformation of variables v ( x ) := � n ( x ) e iϕ ( x ) , � ψ ( x ) = m ∇ ϕ ( x ) Equations of motion for Quantum fluid ∂ ∂ ∂tn ( x ) = − ∇ · ( n ( x ) v ( x )) , ∂t v ( x ) = − v ( x ) · ∇ v ( x ) − ∇ p q ( x ) , − � 2 ∇ 2 � n ( x ) p q ( x ) := − µ m + gn ( x ) . 2 m 2 � m n ( x ) Kyo Yoshida (University of Tsukuba) Spectra in GP turbulence 11th Dec, 2014 5 / 25

  6. Constants of motion n and Energy ¯ Number of particles ¯ E n := 1 � d x | ψ ( x ) | 2 , ¯ V ¯ E := E K ( t ) + E I ( t ) , d x � 2 E K ( t ) := 1 � 2 m | ∇ ψ ( x ) | 2 , V E I ( t ) := 1 � d x g 2 | ψ ( x ) | 4 = 1 � d x g 2[ n ( x )] 2 , V V E K ( t ) : kinetic energy, E I ( t ) : interaction energy Kyo Yoshida (University of Tsukuba) Spectra in GP turbulence 11th Dec, 2014 6 / 25

  7. Quantum fluid Differences between quantum fluid and ordinary fluid obeying Navier-Stokes equation are No dissipation, Quasi-pressure term p q ( x ) , n = 0 No vorticity, ω ( x ) := ∇ × v ( x ) = 0 where n ( x ) � = 0 , C Vortex line for n ( x ) = 0 with a quantized circulation. � d l · v ( x ) = 2 π � m k ( k ∈ Z ) . C . . Is the quantum fluid turbulence similar to the ordinary fluid turbulence? . . . . . Kyo Yoshida (University of Tsukuba) Spectra in GP turbulence 11th Dec, 2014 7 / 25

  8. Numerical simulation of GP equation Fourier transform of ψ � d x e − i k · x ψ ( x ) , ψ k ( t ) := GP equation with external force and dissipation in Fourier space representation. ∂ � ∂tψ k = − i ξ 2 k 2 ψ k + i µψ k − i g δ ( k + p − q − r ) ψ ∗ p ψ q ψ r p , q , r + D k + f k D k : dissipation, f k : external force Kyo Yoshida (University of Tsukuba) Spectra in GP turbulence 11th Dec, 2014 8 / 25

  9. Quantum and ordinary fluid turbulences cf. High vorticity region of a classical fluid turbulence. Simulation with 1024 3 grid Low density region of a quantum fluid points. (Kaneda and Ishihara turbulence. Simulation with 512 3 grid (2006)) points. (Yoshida and Arimitsu (2006)) Kyo Yoshida (University of Tsukuba) Spectra in GP turbulence 11th Dec, 2014 9 / 25

  10. Spectra in Numerical Simulations Simulations with various kinds of D k and f k . Spectrum of quantity X . � F X ( k ) ∝ k ′ δ ( k − | k ′ | ) � X ( k ′ ) X ∗ ( k ′ ) � Kobayashi and Tsubota (2005) F w ( k ) ∼ k − 5 / 3 ( w = P [ √ n v ] , P pjojection onto solenoidal component). Yoshida and Arimitsu (2006) F n ( k ) ∼ k − 3 / 2 , F ψ ( k ) ∼ k − 2 / 3 . Proment, Nazarenko and Onorato (2009) F ψ ( k ) ∼ k − 1 or k − 2 , depending on D k and f k . Scaling law of the Spectra in GP turbulence is unsettled. Kyo Yoshida (University of Tsukuba) Spectra in GP turbulence 11th Dec, 2014 10 / 25

  11. Theoretical approach Doublet representation � ψ k ( t ) � ψ + − k 2 k ( t ) � � � � � 1 0 � := e − L k t L k := i 2 m + µ , . ψ − ψ ∗ k ( t ) − k ( t ) 0 − 1 GP equation in Fourier space ∂ � ∂tψ α δ k − p − q − r M αβγζ kpqr ( t ) ψ β p ( t ) ψ γ q ( t ) ψ ζ k ( t ) = g r ( t ) . pqr � � d 3 k / (2 π ) 3 , δ k = (2 π ) 3 δ ( k ) and � = 1 . where k := kpqr ( t ) := (e − L k t ) αα ′ ˜ M α ′ β ′ γ ′ ζ ′ (e L p t ) β ′ β (e L q t ) γ ′ γ (e L r t ) ζ ′ ζ , M αβγζ kpqr  − i for ( α, β, γ, ζ ) ∈ { (+ , − , + , +) , (+ , + , − , +) , (+ , + , + , − ) } 3   ˜ M αβγζ i kpqr := for ( α, β, γ, ζ ) ∈ { ( − , + , − , − ) , ( − , − , + , − ) , ( − , − , − , +) } . 3  0 otherwise  Kyo Yoshida (University of Tsukuba) Spectra in GP turbulence 11th Dec, 2014 11 / 25

  12. Weak wave turbulence theory When | ∂ ∂t ψ ± k | ≪ | L k ψ ± k | , � ψ ± d x ψ + k e i k · x + L k t . k ( t ) ∼ const. in time , ψ ( x ) ∼ Correlation function k ψ β − k ′ � = Q αβ � ψ α k δ k − k ′ , Spectrum � k ′ δ ( k ′ − k ) Q + − F ( k ) = k ′ , Weak wave turbulence (WWT) theory In the energy-transfer range, � − 1 / 3 � ln k F ( k ) ∼ k − 1 . k b In the particle-number-transfer range, F ( k ) ∼ k − 1 / 3 . Kyo Yoshida (University of Tsukuba) Spectra in GP turbulence 11th Dec, 2014 12 / 25

  13. Strong turbulence GP turbulence Weak wave turbulence (WWT) region: | ∂ ∂t ψ ± k | ≪ | L k ψ ± k | , | ∂ ∂t ψ ± k | ≫ | L k ψ ± Strong turbulence (ST) region: k | . For the ordinary fluid turbulence, which is essentially strong turbulence, some spectral closure approximations are availiable. F u ( k ) ∝ k − 5 / 3 in the energy-transfer range (Kolmogorov spectrum). . . The aim of the present study is to derive the spectrum F ψ ( k ) of GP turbulence not only for the WWT region but for the strong turbulence (ST) region by means of a spectral closure approximation . (K. Yoshida and T. Arimitsu, J. Phys. A: Math. Theor. 46 335501 (2013)) . . . . . Kyo Yoshida (University of Tsukuba) Spectra in GP turbulence 11th Dec, 2014 13 / 25

  14. . .. Quantum fluid (Introduction) 1 . .. Closure Approximation 2 Kyo Yoshida (University of Tsukuba) Spectra in GP turbulence 11th Dec, 2014 14 / 25

  15. Closure approximation Unclosed hierarchy of moments, d d dt � ψ � = gM � ψψψ � , dt � ψψ � = gM � ψψψψ � . Approximate M � ψψψψ � as a function of lower order terms, gM � ψψψψ � = g 2 F [ Q ( t, s ) , G ( t, s )] + O ( g 3 ) Correlation function � ψ α k ( t ) ψ β − k ′ ( t ′ ) � = Q αβ k ( t, t ′ ) δ k − k ′ , Response function � � δψ α k ( t ) = G αβ k ( t, t ′ ) δ k − k ′ . δf β k ′ ( t ′ ) where δf ( t ′ ) is the infinitesimal disturbance added at time t ′ . Kyo Yoshida (University of Tsukuba) Spectra in GP turbulence 11th Dec, 2014 15 / 25

  16. Invariance under global phase transformation For simplicity, let us assume that the statistical quantities are invariant under the global phase transformation, ψ α k ( t ) → e α i θ ψ α k ( t ) . Then, by introducing Q k ( t, t ′ ) and G k ( t, t ′ ) , we have n ( t − t ′ ) Q k ( t, t ′ ) , n ( t − t ′ ) Q ∗ Q + − k ( t, t ′ ) = e − 2i g ¯ Q − + k ( t, t ′ ) = e 2i g ¯ − k ( t, t ′ ) , n ( t − t ′ ) G k ( t, t ′ ) , n ( t − t ′ ) G ∗ G ++ k ( t, t ′ ) = e − 2i g ¯ G −− k ( t, t ′ ) = e 2i g ¯ − k ( t, t ′ ) , and otherwise 0 . Kyo Yoshida (University of Tsukuba) Spectra in GP turbulence 11th Dec, 2014 16 / 25

  17. Procedures for the closure approximation (i) Expand Q and G in functional power series of the solutions Q (0) and G (0) for the zeroth-order in g . ∞ ∞ Q = Q (0) + G = G (0) + � g i Q ( i ) ( Q (0) , G (0) ) , � g i G ( i ) ( Q (0) , G (0) ) , i =1 i =1 ∞ ∞ ∂Q ∂G � g i A ( i ) ( Q (0) , G (0) ) , � g i B ( i ) ( Q (0) , G (0) ) . ∂t = ∂t = i =0 i =0 (ii) Invert these expansions to obtain Q (0) and G (0) in functional power series of Q and G . ∞ ∞ Q (0) = Q + G (0) = G + � g i C ( i ) ( Q, G ) , � g i D ( i ) ( Q, G ) . i =1 i =1 (iii) Substitute these inverted expansions into the primitive expansions of d Q/ d t and d G/ d t to obtain the renormalized expansions. ∞ ∞ ∂Q ∂G � g i E ( i ) ( Q, G ) , � g i F ( i ) ( Q, G ) . ∂t = ∂t = i =0 i =0 (iv) Truncate these renormalized expansions at the lowest nontrivial order. Kyo Yoshida (University of Tsukuba) Spectra in GP turbulence 11th Dec, 2014 17 / 25

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend