hydrodynamic limit of the gross pitaevskii equation
play

Hydrodynamic Limit of the Gross-Pitaevskii equation Kung-Chien Wu - PowerPoint PPT Presentation

Hydrodynamic Limit of the Gross-Pitaevskii equation Kung-Chien Wu Department of Pure Mathematics and Mathematical Statistics University of Cambridge, UK and Institute of Mathematics, Academia Sinica, Taiwan June 26, 2012 Kung-Chien Wu


  1. Hydrodynamic Limit of the Gross-Pitaevskii equation Kung-Chien Wu Department of Pure Mathematics and Mathematical Statistics University of Cambridge, UK and Institute of Mathematics, Academia Sinica, Taiwan June 26, 2012 Kung-Chien Wu Hydrodynamic Limit of the Gross-Pitaevskii equation

  2. Outline • Introduction • Wave Group • Main Theorem and Proof Kung-Chien Wu Hydrodynamic Limit of the Gross-Pitaevskii equation

  3. Outline • Introduction • Wave Group • Main Theorem and Proof Kung-Chien Wu Hydrodynamic Limit of the Gross-Pitaevskii equation

  4. Gross-Pitaevskii equation Time scaled Gross-Pitaevskii equation i ε α ∂ t ψ ε + ε 2 α 2 ∆ ψ ε − 1 ε 2 ( | ψ ε | 2 − ρ 0 ) ψ ε = 0 . Madelung transform (1927) ψ ε = R exp( iS /ε α ) GP becomes ∂ t R + R 2 ∆ S + ∇ R · ∇ S = 0 , 2 |∇ S | 2 + R 2 − ρ 0 = ε 2 α ∂ t S + 1 ∆ R R . ε 2 2 Kung-Chien Wu Hydrodynamic Limit of the Gross-Pitaevskii equation

  5. Gross-Pitaevskii equation Time scaled Gross-Pitaevskii equation i ε α ∂ t ψ ε + ε 2 α 2 ∆ ψ ε − 1 ε 2 ( | ψ ε | 2 − ρ 0 ) ψ ε = 0 . Madelung transform (1927) ψ ε = R exp( iS /ε α ) GP becomes ∂ t R + R 2 ∆ S + ∇ R · ∇ S = 0 , 2 |∇ S | 2 + R 2 − ρ 0 = ε 2 α ∂ t S + 1 ∆ R R . ε 2 2 Kung-Chien Wu Hydrodynamic Limit of the Gross-Pitaevskii equation

  6. Gross-Pitaevskii equation Time scaled Gross-Pitaevskii equation i ε α ∂ t ψ ε + ε 2 α 2 ∆ ψ ε − 1 ε 2 ( | ψ ε | 2 − ρ 0 ) ψ ε = 0 . Madelung transform (1927) ψ ε = R exp( iS /ε α ) GP becomes ∂ t R + R 2 ∆ S + ∇ R · ∇ S = 0 , 2 |∇ S | 2 + R 2 − ρ 0 = ε 2 α ∂ t S + 1 ∆ R R . ε 2 2 Kung-Chien Wu Hydrodynamic Limit of the Gross-Pitaevskii equation

  7. Hydrodynamic Structure Hydrodynamic Variables ρ ε = R 2 = | ψ ε | 2 i ε α u ε = ∇ S = 2 | ψ ε | 2 ( ψ ε ∇ ψ ε − ψ ε ∇ ψ ε ) ϕ ε = ρ ε − ρ 0 J ε = ρ ε u ε , , ε Hydrodynamic structure of GP  ∂ t ρ ε + ∇ · ( ρ ε u ε ) = 0 ,    � ∆ √ ρ ε � ε 2 ∇ ( ρ ε − ρ 0 ) = ε 2 α ∂ t u ε + ( u ε · ∇ ) u ε + 1    2 ∇ √ ρ ε . Kung-Chien Wu Hydrodynamic Limit of the Gross-Pitaevskii equation

  8. Hydrodynamic Structure Hydrodynamic Variables ρ ε = R 2 = | ψ ε | 2 i ε α u ε = ∇ S = 2 | ψ ε | 2 ( ψ ε ∇ ψ ε − ψ ε ∇ ψ ε ) ϕ ε = ρ ε − ρ 0 J ε = ρ ε u ε , , ε Hydrodynamic structure of GP  ∂ t ρ ε + ∇ · ( ρ ε u ε ) = 0 ,    � ∆ √ ρ ε � ε 2 ∇ ( ρ ε − ρ 0 ) = ε 2 α ∂ t u ε + ( u ε · ∇ ) u ε + 1    2 ∇ √ ρ ε . Kung-Chien Wu Hydrodynamic Limit of the Gross-Pitaevskii equation

  9. Hydrodynamic Structure The hydrodynamic Euler equation ( ρ ε , J ε )  ∂ t ρ ε + ∇ · J ε = 0 ,    � J ε ⊗ J ε � ρ ε ∇ 2 log ρ ε � 2 ∇ ( ϕ ε ) 2 = ε 2 α � + 1 ερ 0 ∇ ϕ ε + 1  ∂ t J ε + ∇ ·   4 ∇ · . ρ ε • J ε 0 → J 0 = ρ 0 v 0 , ϕ ε 0 → 0, and ∇ · ( ρ 0 v 0 ) = 0. Hydrodynamic Limit ( ε → 0 ) Lake equations (anelastic system) with nonconstant density ρ 0  � � ∇ · ρ 0 u = 0 ,      ∂ t ( ρ 0 u ) + ∇ · ( ρ 0 u ⊗ u ) + ρ 0 ∇ π = 0 ,      ρ 0 u ( x , 0) = ρ 0 v 0 . Kung-Chien Wu Hydrodynamic Limit of the Gross-Pitaevskii equation

  10. Hydrodynamic Structure The hydrodynamic Euler equation ( ρ ε , J ε )  ∂ t ρ ε + ∇ · J ε = 0 ,    � J ε ⊗ J ε � ρ ε ∇ 2 log ρ ε � 2 ∇ ( ϕ ε ) 2 = ε 2 α � + 1 ερ 0 ∇ ϕ ε + 1  ∂ t J ε + ∇ ·   4 ∇ · . ρ ε • J ε 0 → J 0 = ρ 0 v 0 , ϕ ε 0 → 0, and ∇ · ( ρ 0 v 0 ) = 0. Hydrodynamic Limit ( ε → 0 ) Lake equations (anelastic system) with nonconstant density ρ 0  � � ∇ · ρ 0 u = 0 ,      ∂ t ( ρ 0 u ) + ∇ · ( ρ 0 u ⊗ u ) + ρ 0 ∇ π = 0 ,      ρ 0 u ( x , 0) = ρ 0 v 0 . Kung-Chien Wu Hydrodynamic Limit of the Gross-Pitaevskii equation

  11. Hydrodynamic Structure The hydrodynamic Euler equation ( ρ ε , J ε )  ∂ t ρ ε + ∇ · J ε = 0 ,    � J ε ⊗ J ε � ρ ε ∇ 2 log ρ ε � 2 ∇ ( ϕ ε ) 2 = ε 2 α � + 1 ερ 0 ∇ ϕ ε + 1  ∂ t J ε + ∇ ·   4 ∇ · . ρ ε • J ε 0 → J 0 = ρ 0 v 0 , ϕ ε 0 → 0, and ∇ · ( ρ 0 v 0 ) = 0. Hydrodynamic Limit ( ε → 0 ) Lake equations (anelastic system) with nonconstant density ρ 0  � � ∇ · ρ 0 u = 0 ,      ∂ t ( ρ 0 u ) + ∇ · ( ρ 0 u ⊗ u ) + ρ 0 ∇ π = 0 ,      ρ 0 u ( x , 0) = ρ 0 v 0 . Kung-Chien Wu Hydrodynamic Limit of the Gross-Pitaevskii equation

  12. Hydrodynamic Structure Dispersive limit of the Schr¨ odinger type equations M. Puel (CPDE, 02); A. J¨ ungel, S. Wang (CPDE, 03); F. H. Lin, P. Zhang (CMP, 05); T. C. Lin, P. Zhang (CMP, 06); C.K. Lin, K.C. Wu (JMPA, to appear). Question : How about ∇ · J 0 � = 0 and ϕ ε 0 → ϕ 0 . Kung-Chien Wu Hydrodynamic Limit of the Gross-Pitaevskii equation

  13. Hydrodynamic Structure Dispersive limit of the Schr¨ odinger type equations M. Puel (CPDE, 02); A. J¨ ungel, S. Wang (CPDE, 03); F. H. Lin, P. Zhang (CMP, 05); T. C. Lin, P. Zhang (CMP, 06); C.K. Lin, K.C. Wu (JMPA, to appear). Question : How about ∇ · J 0 � = 0 and ϕ ε 0 → ϕ 0 . Kung-Chien Wu Hydrodynamic Limit of the Gross-Pitaevskii equation

  14. Review Previous Work Incompressible limit of the Navier-Stokes or Euler system • classical solution: S. Klainerman, A. Majda (CPAM, 81). • weak solutions: P.L. Lion, N. Masmoudi (JMPA, 98). Incompressible limit with nonconstant density • D. Bresch, M. Gisclon, C. K. Lin (M2AN, 05). • D. Bresch, B. Desjardins, G. M´ etivier (06). • N. Masmoudi (JMPA, 07). • E. Feireisl, J. M´ alek, A. Novotn´ y, I. Straskraba (CPDE, 08). Kung-Chien Wu Hydrodynamic Limit of the Gross-Pitaevskii equation

  15. Review Previous Work Incompressible limit of the Navier-Stokes or Euler system • classical solution: S. Klainerman, A. Majda (CPAM, 81). • weak solutions: P.L. Lion, N. Masmoudi (JMPA, 98). Incompressible limit with nonconstant density • D. Bresch, M. Gisclon, C. K. Lin (M2AN, 05). • D. Bresch, B. Desjardins, G. M´ etivier (06). • N. Masmoudi (JMPA, 07). • E. Feireisl, J. M´ alek, A. Novotn´ y, I. Straskraba (CPDE, 08). Kung-Chien Wu Hydrodynamic Limit of the Gross-Pitaevskii equation

  16. Helmholtz Decomposition Let f ∈ L 2 1 /ρ 0 ( T n ), the weighted Helmholtz decomposition f = H ρ 0 [ f ] ⊕ H ⊥ ρ 0 [ f ] with H ⊥ div H ρ 0 [ f ] = 0 , ρ 0 [ f ] = ρ 0 ∇ Ψ . where Ψ ∈ D 1 , 2 ( T n ) is the unique solution of the problem � � ∀ ϕ ∈ D 1 , 2 ( T n ) . T n ρ 0 ∇ Ψ · ∇ ϕ dx = T n f · ∇ ϕ dx , D 1 , 2 ( T n ) : completion of C ∞ 0 ( T n ) w.r.t. �∇ · � L 2 1 /ρ 0 ( T n ) . L 2 1 /ρ 0 ( T n ) : weighted Hilbert space with the scalar product � T n v · w dx < v , w > 1 /ρ 0 = . ρ 0 Kung-Chien Wu Hydrodynamic Limit of the Gross-Pitaevskii equation

  17. Helmholtz Decomposition Let f ∈ L 2 1 /ρ 0 ( T n ), the weighted Helmholtz decomposition f = H ρ 0 [ f ] ⊕ H ⊥ ρ 0 [ f ] with H ⊥ div H ρ 0 [ f ] = 0 , ρ 0 [ f ] = ρ 0 ∇ Ψ . where Ψ ∈ D 1 , 2 ( T n ) is the unique solution of the problem � � ∀ ϕ ∈ D 1 , 2 ( T n ) . T n ρ 0 ∇ Ψ · ∇ ϕ dx = T n f · ∇ ϕ dx , D 1 , 2 ( T n ) : completion of C ∞ 0 ( T n ) w.r.t. �∇ · � L 2 1 /ρ 0 ( T n ) . L 2 1 /ρ 0 ( T n ) : weighted Hilbert space with the scalar product � T n v · w dx < v , w > 1 /ρ 0 = . ρ 0 Kung-Chien Wu Hydrodynamic Limit of the Gross-Pitaevskii equation

  18. Helmholtz Decomposition (A) Conservation of charge ∂ ∂ t ρ ε + ∇ · J ε = 0 . (B) Conservation of momentum (current) � � ∂ t J ε + 1 ∂ ( ∇ ψ ε ⊗ ∇ ψ ε + ∇ ψ ε ⊗ ∇ ψ ε ) − ∇ 2 ( | ψ ε | 2 ) 2 ε 2 α ∇ · +1 2 ∇ ( ϕ ε ) 2 + 1 ερ 0 ∇ ϕ ε = 0 . Define J ε = H ρ 0 [ J ε ] + H ⊥ ρ 0 [ J ε ] = H ρ 0 [ J ε ] + ρ 0 ∇ w ε , Kung-Chien Wu Hydrodynamic Limit of the Gross-Pitaevskii equation

  19. Helmholtz Decomposition (A) Conservation of charge ∂ ∂ t ρ ε + ∇ · J ε = 0 . (B) Conservation of momentum (current) � � ∂ t J ε + 1 ∂ ( ∇ ψ ε ⊗ ∇ ψ ε + ∇ ψ ε ⊗ ∇ ψ ε ) − ∇ 2 ( | ψ ε | 2 ) 2 ε 2 α ∇ · +1 2 ∇ ( ϕ ε ) 2 + 1 ερ 0 ∇ ϕ ε = 0 . Define J ε = H ρ 0 [ J ε ] + H ⊥ ρ 0 [ J ε ] = H ρ 0 [ J ε ] + ρ 0 ∇ w ε , Kung-Chien Wu Hydrodynamic Limit of the Gross-Pitaevskii equation

  20. the equation can be rewritten as  ε∂ t ϕ ε + div ( ρ 0 ∇ w ε ) = 0 ,  ε∂ t ( √ ρ 0 ∇ w ε ) + √ ρ 0 ∇ ϕ ε = ε  √ ρ 0 F ε , 1 where F ε = − ε 2 α � ∇ ψ ε ⊗ ∇ ψ ε + ∇ ψ ε ⊗ ∇ ψ ε � 2 H ⊥ ρ 0 ∇ · ρ 0 ∇ ( ϕ ε ) 2 + ε 2 α − 1 ρ 0 ∇ ∆ ρ ε . 2 H ⊥ 4 H ⊥ It is obvious that ∂ t ϕ ε and ∂ t ( √ ρ 0 ∇ w ε ) are of order O (1 /ε ) and are highly oscillatory as ε → 0. So we have to introduce the wave group in order to filter out the fast oscillating wave. Kung-Chien Wu Hydrodynamic Limit of the Gross-Pitaevskii equation

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend