spectroscopy interaction
play

spectroscopy; interaction between radiation & matter (2) Maria - PowerPoint PPT Presentation

Intro to SR & FEL spectroscopy; interaction between radiation & matter (2) Maria Novella Piancastelli Sorbonne Universits, UPMC Univ Paris 06, CNRS, Laboratoire de Chimie Physique-Matire et Rayonnement, France Department of Physics


  1. Intro to SR & FEL spectroscopy; interaction between radiation & matter (2) Maria Novella Piancastelli Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, France Department of Physics and Astronomy, Uppsala University, SE-75120 Uppsala, Sweden

  2. The Physics of Free Electron Lasers By Evgeny Saldin, Evgeny A. Schneidmiller, M.V. Yurkov Springer, 2000 Classical Theory of Free-Electron Lasers By Eric B. Szarmes Morgan & Claypool Publishers, 2014 Insertion Devices for Synchrotron Radiation and Free Electron Laser By F. Ciocci , G. Dattoli, A. Torre, A. Renieri World Scientific, 2000

  3. FLASH DESY, Hamburg, Germany

  4. Pump-probe experiments

  5. Y. H. Jiang et al., PRL 105, 263002 (2010)

  6. Mean isomerization time: 52 ± 15 fs

  7. LCLS SLAC, Stanford, CA, USA

  8. L.Young et al., Nature 466, 56 (2010)

  9. B.Erk et al., Science 345, 288 (2014)

  10. DCH Single-Site (SS) DCH Two-Site (TS) Substantially enhanced chemical sensitivity L.S.Cederbaum et al, J.Chem.Phys. 85, (1986) 6513

  11. Single Photon – Multiple Ionisation E B1 + E B2 (+ …) = h  - E kin1 - E kin2 (- …) Double (multiple) ionisation energy (DIP, …)

  12. Time-Of-Flight Magnetic Bottle Multi-Electron Spectrometer “4π” correlation device e - e - e - e - D t  E Kin Pulsed light source: He-lamp, SR, fs-laser system, FEL ฀ J.H.D. Eland et al ., Phys. Rev. Lett. 90 , 053003 (2003)

  13. P.Lablanquie, F.Penent,J.Palaudoux, L.Andric, P.Selles, S.Carniato, K.Bu ĉ ar, M. Ž itnik, M. Huttula, J.H.D.Eland, E.Shigemasa, K.Soejima, Y.Hikosaka, I.H.Suzuki, M.Nakano and K.Ito, PRL 106, 063003 (2011)

  14. CH 4 NH 3 J.H.D.Eland, M.Tashiro, P.Linusson, M.Ehara, K.Ueda and R. Feifel, PRL 105, 213005 (2010)

  15. C 2 H 2 P. Lablanquie,T. P. Grozdanov, M. Ži tnik, S. Carniato, P. Selles, L. Andric, J. Palaudoux, F. Penent, H. Iwayama, E. Shigemasa, Y. Hikosaka, K. Soejima, M. Nakano, I. H. Suzuki and K. Ito, PRL 107, 193004 (011)

  16. Few Photon – Multiple Ionisation

  17. DCH measurements: CO N. Berrah, ……M.N.Piancastelli et al. , PNAS Challenge remains : TS-DCH  CVV/VVVV Auger 108, 16912 (2011) and Auger from other channels overlap

  18. 1500 1500 4000 4000 N 2 O (N 1s) N 2 O (N 1s) (a) (a) (b) (b) N 2 N 2 Foc Foc 600 600 Foc Foc Unfoc Unfoc 3000 3000 Unfoc Unfoc Foc-unfoc Foc-unfoc Counts / eV Counts / eV Counts / eV Counts / eV Foc-unfoc Foc-unfoc 2000 2000 1500 1500 1000 1000 400 400 Counts / eV Counts / eV 0 0 0 0 80 80 90 90 100 100 110 110 120 120 80 80 120 120 160 160 200 200 Kinetic energy (eV) Kinetic energy (eV) Kinetic energy (eV) Kinetic energy (eV) 500 500 tsDCH tsDCH tsDCH tsDCH 200 200 PAP PAP -1 -1 tsDCH tsDCH ssDCH ssDCH SCH N c SCH N c PAP PAP -1 N c -1 N c -1 -1 -1 N -1 N -1 -1 N N N t N t -1 N t -1 N t -1 -1 -2 -2 N c N c -1 -1 N N -1 -1 SCH N t SCH N t SCH N SCH N 0 0 0 0 80 80 100 100 120 120 140 140 160 160 180 180 200 200 80 80 90 90 100 100 110 110 120 120 Kinetic energy (eV) Kinetic energy (eV) Kinetic energy (eV) Kinetic energy (eV) • P. Salén, P. van der Meulen, H.T. Schmidt, R.D. Thomas, M. Larsson, R. Feifel, M.N. Piancastelli, L.Fang, B. Murphy, T. Osipov, N. Berrah, E. Kukk, K. Ueda, J.D. Bozek, C. Bostedt, S. Wada, R. Richter, V. Feyer and K.C. Prince, PRL 108, 153003 (2012)

  19. High performances of the GALAXIES beam line: high flux and high resolution Single-channel measurements Immediate identification of states of the type:

  20. R.Püttner, G. Goldsztejn, D. Céolin, J.-P.Rueff, T. Moreno, R. K. Kushawaha, T. Marchenko, R. Guillemin, L.Journel, D. W. Lindle, M.N. Piancastelli and M. Simon, Phys. Rev. Lett. 114, 093001 (2015)

  21. Double core hole (DCH) in Neon Ne 2+ Ne 3+ Ne 4+ Ne  K -2 in Neon. E(eV)  Double Ionization Potential = 1863 eV.  The two photoelectrons share the energy 2p  First Auger electron = 2s Hypersatellite. h ν  Second Auger electron 870.2 eV 1s = satellite. Ground state : Intermediate state : First Auger decay : Second Auger decay 1s 2 2s 2 2p 6 1s 0 2s 2 2p 6 1s 1 2s 2 2p 4 : 1s 2 2s 2 2p 2 Ne + Ne 2+ Ne 2+ Ne E(eV)  K -2 V in Neon.  Photoelectrons well separated and or easy to identify. 2p 2s  Different type of h ν decays at different energies. 870.2 eV 1s Ground state : Intermediate state : Spectator Participator 1s 2 2s 2 2p 6 1s 0 2s 2 2p 6 nl 1 Auger decay : Auger decay : 1s 1 2s 2 2p 4 nl 1 1s 2 2s 2 2p 5

  22. Photon energy dependence of DCH h ν = 2300 eV h ν = 3000 eV 1s -2 5s 1s -2 3s 1s -2 3p 1s -2 4s 1s -2 4p h ν = 4000 eV h ν = 7000 eV

  23. The hypersatellite spectra HAXPES 2014 Southworth et al. 2003 K -2 K -1 Rydberg serie K -2 V 820 840 860 880  K -1 ≈ 1000 times more intense than K -2  Thanks to much better resolution we were able to identify K -1 satellites Southworth et al. PRA 67, 062712 (2003) Svensson et al. J. Electron Spectrosc. Relat. Phenom. 47, 327 (1988)

  24. FERMI Elettra, Trieste, Italy Aerial view Beam transport and beamlines

  25. FERMI First seeded FEL Variable polarization Negligible photon energy jitter Negligible time jitter

  26. Low Density Matter (LDM)

  27. Probing keto-enol tautomerism in acetylacetone

  28. Enol form Keto form

  29. CH 3 J. Dyke, N. Jonathan, E. Lee and A. Morris J. Chem. Soc., Faraday Trans. 2 72, (1976) 1385

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend