special functions differential equations fourier series
play

! Special Functions ! Differential Equations ! Fourier Series and - PowerPoint PPT Presentation

! Special Functions ! Differential Equations ! Fourier Series and Transforms ! Probability and Random Processes ! Linear System Analysis ME 437/537-Particle G. Ahmadi ME 437/537-Particle G. Ahmadi ( ) ( ) du t t Unit Step Unit Step


  1. ! Special Functions ! Differential Equations ! Fourier Series and Transforms ! Probability and Random Processes ! Linear System Analysis ME 437/537-Particle G. Ahmadi ME 437/537-Particle G. Ahmadi ( ) − ( ) du t t Unit Step Unit Step Dirac Delta Dirac Delta ⎧ ≥ ⎫ δ − = 1 t t 0 ( ) t t − = 0 ⎨ ⎬ u t t 0 Function Function Function Function dt < 0 ⎩ ⎭ 0 t t 0 u(t-t o ) δ (t-t o ) t o t o ME 437/537-Particle G. Ahmadi ME 437/537-Particle G. Ahmadi 1

  2. +∞ ( ) + ε ( ) ∫ ∫ t Error Error ( ) 2 δ − = δ − = 0 ∫ x t dt − = 2 t t dt t t dt 1 erf x e 0 0 − ∞ − ε t π Function Function 0 0 +∞ ( ) ( ) + ε ( ) ( ) ( ) ∫ ∫ t δ − = δ − = 0 f t t t dt f t t t dt f t ( ) ( ) ∞ 2 ∫ t dt = − = − 2 0 0 0 − ∞ − ε erfc x 1 erf x e t 0 π x ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ∫ ∞ t = = ∞ − = − δ − = − erf 0 0 erfc f t t t dt f t u t t erf x erf x 1 1 0 1 0 0 − − Exponential ( ) ∫ xt Exponential ∞ e ( ) ∫ ∞ t = e x [ ] ( ) 1 ( ) = E x dt δ − = δ − E x dt a t t t t Integrals n Integrals i t − 1 0 0 t a ME 437/537-Particle G. Ahmadi ME 437/537-Particle G. Ahmadi Linear First- Linear First -Order Order dy ( ) ( ) 2 d y dy + = + + = P x y Q x a by 0 dx 2 dx dx ∫ x ( ) + + = → x ( ) ∫ − 2 ( ) − m am b 0 Solve for m , m x P x dx P x dx ∫ = + 1 2 1 1 2 y ce e x Q x dx 0 1 1 1 0 = + m x m x ≠ = y c e c e m m Re al 1 2 2 1 ( ) 1 2 dy ( ) ∫ x = − − + = b ( x x ) b y Q x y e Q x dx 1 1 1 dx = = 0 = + m m m mx y e ( c c x ) 2 1 1 2 ME 437/537-Particle G. Ahmadi ME 437/537-Particle G. Ahmadi 2

  3. a 2 = + ( ) = − d y dy m 1 p qi p + + = Particular Solutions Particular Solutions a by R x 2 2 dx dx = − m 2 p qi 2 a = − q b m x m x e ( ) e ( ) 1 2 ∫ ∫ = − + − m x m x y e 1 R x dx e 2 R x dx 4 − − P m m m m 1 2 2 1 ( ) ( ) ∫ ∫ = − − − mx mx mx mx y xe e R x dx e xe R x dx P ( ) = + px px px y e c cos qx c sin qx e sin qx ( ) e cos qx ( ) ∫ ∫ − − = − px px y e R x cos qx dx e R x sin qx dx 1 2 P q q ME 437/537-Particle G. Ahmadi ME 437/537-Particle G. Ahmadi ⎛ ⎞ 2 ( ) dy y d y dy = + + = ⎜ ⎟ 2 F x ax by s x ⎝ ⎠ 2 dx dx dx x y ( ) dy dv y = v = − + + = m = + Ax m m 1 am b 0 Let x v Let Let Let x dx dx = ∫ dv = + + m m ln x c y A x A x ( ) 1 2 − 1 2 F v v ME 437/537-Particle G. Ahmadi ME 437/537-Particle G. Ahmadi 3

  4. ( ) ( ) + = ( ) 2 M x , y dx N x , y dy 0 d y dy + + β − = 2 2 2 2 x x x n y 0 2 dx dx ( ) ∂ ∂ ∂ ϕ 2 M N x , y = = With With ( ) ( ) ∂ ∂ ∂ ∂ = β + β y x x y Solutions y C J x C Y x Solutions 1 n 2 n ∂ ϕ ∂ ϕ = = N M ∂ ∂ ( ) ( ) y x J n β Y n β Bessel Bessel x x ( ) Functions Functions ϕ = x , y const ME 437/537-Particle G. Ahmadi ME 437/537-Particle G. Ahmadi ( ) ( ) = − − ∞ π π ⎛ ⎞ f x f x ( ) a n x n x ∑ = + + ⎜ ⎟ 0 f x a cos b sin ⎝ n n ⎠ 2 L L = n 1 π π ∞ ( ) ∑ n x 2 ( ) n x ∫ L = = f x b sin b f x sin dx π π 1 ( ) n x 1 ( ) n x n n ∫ L ∫ − L L = = L L 0 a f x cos dx b f x sin dx = n 1 n n − L L L L L L Fourier Exponential Series π Fourier Exponential Series ( ) ( ) n = − ω = Fourier Cosine Series Fourier Cosine Series f x f x n L ∞ ( ) ∑ 1 ( ) L = ω ∫ − = − ω π i x ∞ π i x f x c e ( ) 2 ( ) n x n c f x e dx a ∑ n x ∫ L n = = + 0 n f x a cos a f x cos dx n 2 L L n = −∞ n 2 L n L L 0 = n 1 ME 437/537-Particle G. Ahmadi ME 437/537-Particle G. Ahmadi 4

  5. π FES ∞ Fourier Integral Representation Fourier Integral Representation ( ) ∑ in x − < < FES FES L x L = f x c n e L ) ( ) = −∞ ( ) 1 + ∞ + ∞ n ( ∫ ∫ = ω − ′ ′ ′ ω i x x f x e f x d x d π − ∞ − ∞ 2 π in x 1 − ( ) ∫ − L = ′ c e L f x dx n 2 L L Fourier Transform (Exponential) Fourier Transform (Exponential) π π ) ( ) +∞ n ( ) 1 ∑∫ ( L ω = ∆ ω = Replacing = ω − ′ ′ ( ) +∞ ( ) i x x ∫ f x e f x dx − ω ′ ′ ′ n ω = i x for c n n f e f x d x − 2 L L L L − ∞ − ∞ + ∞ ( ) 1 ( ) ∫ = ω ω ω ∑ i x ∫ f x e f d → ∞ ∆ ω = ω L g n gd π − ∞ 2 ME 437/537-Particle G. Ahmadi ME 437/537-Particle G. Ahmadi ( ) ∞ ( ) ∫ ′ ′ ′ ω = ω ( ) f cos x f x d x ⎧ ⎫ c df + ∞ df x ( ) 0 ∫ ℑ = − ω = ω ω ⎨ ⎬ i x Fourier Cosine Fourier Cosine e dx i f ⎩ ⎭ ( ) 2 ∞ ( ) − ∞ Transform Transform ∫ dx dx = ω ω ω f x cos x f d π c 0 ( ) ∞ ( ) ∫ ω = ω ′ ′ ′ ⎧ ⎫ ⎧ ⎫ 2 n f sin x f x d x ( ) d f ( ) ( ) d f ℑ = ω ω s ℑ = − ω ω n ⎨ ⎬ 2 ⎨ ⎬ 0 f i f Fourier Sine Fourier Sine n 2 ⎩ ⎭ ⎩ ⎭ dx dx Transform ∞ Transform ( ) 2 ( ) ∫ = ω ω ω f x sin x f d π s 0 ME 437/537-Particle G. Ahmadi ME 437/537-Particle G. Ahmadi 5

  6. ( ) ( ) ω f f x 2 d f df ( ) + + = δ − − ∞ < < +∞ a bf x x x ( ) ( ) ω f + ω i x f x x e 0 0 2 dx dx 1 0 ( ) − ω δ x − i x e x 0 0 α − α 2 Taking Fourier Transform Taking Fourier Transform x e ω + α 2 2 ( ) ( ) ( ) ( ) +∞ ( ) ( ) ω ω ( ) ( ) ( ) ∫ = ξ − ξ ξ f x * f x f f x d f f − ω ω + ω ω + ω = − ω i x 2 1 2 1 2 − ∞ 1 2 f ai f b f e 0 [ ] ( ) ( ) ω π δ ω − ω + δ ω + ω cos x 0 0 0 ( ) ( ) α ω + α + β − α β 2 2 2 − ω ω − x 2 i x i x x ( ) e cos x e ( ) 1 + ∞ e ( ) 0 0 ∫ ω = ω − β − α 2 + α ω = ω 2 2 2 2 2 4 f f x d ( ) − ω + ω ⎡ α ⎤ α α + β π − ω + ω 2 2 2 4 b ia − ∞ 2 2 b ia − α x β + β ( ) e ⎢ cos x sin x ⎥ β ω − β − α 2 + α ω ⎣ ⎦ 2 2 2 2 2 4 ME 437/537-Particle G. Ahmadi ME 437/537-Particle G. Ahmadi ( ) ( ) F Y (y) ω f x f ( ) ( ) ⎡ ⎧ ⎫ ⎧ ⎫ ⎤ − α π ω + β ω − β 2 x 2 β 2 2 e cos x − + − ⎢ ⎨ ⎬ ⎨ ⎬ ⎥ exp exp α α α 1 2 2 ⎢ ⎥ 2 ⎣ ⎩ 4 ⎭ ⎩ 4 ⎭ ⎦ ⎧ ⎫ e α − 2 x 2 π ω 2 − ⎨ ⎬ exp α α 2 ⎩ 4 ⎭ ( ) n d ( ) i ω n δ x y n dx ( ) ⎧ ⎫ 2 ω < J 0 x ⎪ ⎪ 1 ( ) ( ) { } ⎨ ⎬ − ω 2 ≤ ≤ 1 = ≤ ⎪ ⎪ 0 F y 1 F y P Y y ⎩ 0 elsewhere ⎭ Y Y ME 437/537-Particle G. Ahmadi ME 437/537-Particle G. Ahmadi 6

  7. f Y (y) ( ) { } +∞ ( ) ( ) dF y Expected Expected ∫ = = = ( ) +∞ ( ) Y f y ∫ ∞ = = E Y Y yf y dy F 1 f y dy Y dy Y Y Y − ∞ Value Value − ∞ { ( ) } ( ) +∞ ( ) ( ) ∫ = = E g Y g Y g y f y dy Y − ∞ y Variance Variance { } ( ) { } { } ( ) ( ) ( ) ∫ y 2 2 < ≤ = = − σ = − = − 2 2 2 P y Y y f y dy F y F y E Y Y E Y Y 1 2 Y Y 2 Y 1 y Y 1 ME 437/537-Particle G. Ahmadi ME 437/537-Particle G. Ahmadi X(t) = ∫ Time ( ) 1 ( ) { ( ) } Time T ≈ X t X t dt E X t Averaging Averaging T 0 Autocorrelation Autocorrelation t ( ) { ( ) ( ) } 1 ( ) ( ) ∫ T τ = + τ = + τ R E X t X t X t X t dt xx T 0 { ( ) } +∞ ( ) { } ∫ = ( ) ( ) ( ) E X t xf x , t dx = = 2 2 R 0 E X t X t X − ∞ xx ME 437/537-Particle G. Ahmadi ME 437/537-Particle G. Ahmadi 7

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend