spec spht cea emes hors de l syst equilibre et groupe de
play

SPEC/SPhT CEA emes hors de l Syst` Equilibre et Groupe de - PowerPoint PPT Presentation

SPEC/SPhT CEA emes hors de l Syst` Equilibre et Groupe de Renormalisation Non Perturbatif L eonie Canet Collaborateurs: e , B. Delamotte , O. Deloubri` ere , I. Dornic , H. Chat noz et N. Wschebor


  1. SPEC/SPhT – CEA emes hors de l’´ Syst` Equilibre et Groupe de Renormalisation Non Perturbatif L´ eonie Canet Collaborateurs: e ∗ , B. Delamotte ∗∗ , O. Deloubri` ere † , I. Dornic ∗ , H. Chat´ noz ‡ et N. Wschebor †† H. Hilhorst # , M.A. Moore + , M.A. Mu˜ ∗ C.E.A. (Saclay), ∗∗ L.P.T.M.C. (Paris), # L.P.T. (Orsay), † Virginia Tech, + University of Manchester, ‡ University of Granada, †† University of MonteVideo L. C., C.E.A. Saclay

  2. Outline • Introduction: Non-Equilibrium Systems • Non-Perturbative Renormalisation Group (NPRG) • Reaction-Diffusion Processes – Mean-Field - Field Theory – Directed Percolation (DP) – Branching and Annihilating Random Walks (BARW) • Growth Phenomena – The Kardar-Parisi-Zhang (KPZ) Equation – Kinetic Roughening and Strong Coupling Regime • Conclusion and Prospects L. C., C.E.A. Saclay 1

  3. Introduction: Non Equilibrium Systems • existence of critical phenomena: phase transitions between non-equilibrium stationary states. − → challenge: identify the universality classes out of equilibrium. — no systematic analytical method — no conformal symmetry in d = 2 — no high order RG calculations available − → simple models: reaction-diffusion processes and growth phenomena. = ⇒ use of a non-perturbative approach: the Non Perturbative Renormalisation Group (NPRG) L. C., C.E.A. Saclay 2

  4. Wilsonian Renormalisation Group discrete Spin-blocking: dk s| q continuum Separation of modes: s < | q<k s > | q>k q 0 k Λ e −S eff Z k [ s < ] = D s > e −S [ s > + s < ] Effective action: 0 δ 2 S eff δ S eff δ S eff 1 dd q Wilson-Polchinski : = 1 Z ∂k S eff k k k @ ∂kKk ( q ) δ s < ( q ) δ s < ( − q ) − δ s < ( q ) ∂ kKk ( q ) k A ( 2 π ) d 2 δ s < ( − q ) K.G. Wilson and J. Kogut, Phys. Rep. C 12 (1974) , J. Polchinski, Nucl. Phys. B 231 (1984) L. C., C.E.A. Saclay 3

  5. Effective Average Action Γ [ψ ] = [ϕ] S k= Λ Λ Same procedure on Legendre transform: − → Γ k Gibbs free energy of fluctuation modes q > k Γ [ψ ] k k C. Wetterich, Phys. Lett. B 301 (1993) , T. Morris, Int. J. Mod. Phys. A 9 (1994) Γ [ψ ] = Γ[ψ] − → low-energy modes must be decoupled k=0 0 Z D φ e −S [ φ ] − ∆ S k [ φ ] + J.φ = ⇒ “mass” term in the partition function: Z k [ J ] = Z Legendre transform: Γ k = − ln Z k + J.ψ − ∆ S k [ ψ ] 2 R (q ) d d q ∆ S k [ φ ] = 1 Z k (2 π ) d φ ( q ) R k ( q ) φ ( − q ) 2 k 2  R k ( q 2 ) → 0 for k → 0 R k ( q 2 ) → ∞ for k → Λ k 2 q 2 L. C., C.E.A. Saclay 4

  6. Exact Flow Equation for Γ k �� � ∂ k Γ k [ ψ ] = 1 � − 1 Γ (2) 2 Tr k [ ψ ] + R k ∂ k R k − → regularised in the IR and in the UV − → thermodynamical quantities from the limit k → 0 − → suitable for non-perturbative approximations: not restricted to critical dimension or weak couplings = ⇒ systematic and controlled approximation schemes. Applications at Equilibrium • frustrated antiferromagnets • Kosterlitz-Thouless transition M. Grater and C. Wetterich, Phys. Rev. Lett. 75 (1995) , B. Delamotte, D. Mouhanna and M. Tissier, Phys. Rev. B 69 G. von Gersdorff and C. Wetterich, Phys. Rev. B 64 (2001) (2004) L. C., C.E.A. Saclay 5

  7. Non-Perturbative Approximations Schemes • write an Ansatz for Γ k dictated by the symmetries and physics of interest. derivative expansion e.g. Ising model: Z 2 symmetry = ⇒ invariant ρ = ψ 2 � � U k ( ρ ) + 1 / 2 Z k ( ρ ) ( ∂ ψ ) 2 � d d x Γ k [ ψ ] = Z ” 2 ( ∂ ψ ) 2 i 2 o n “ k ( ρ ) ( ∂ ψ ) 2 “ ” h d d x W a ∂ 2 ψ + W b ψ∂ 2 ψ + W c + k ( ρ ) k ( ρ ) ∂ 4 ( a ′ ) LPA ( a ) ∂ 2 ( a ) 7-bcles ( b ) MC ( c ) ν 0.6506 0.6281 0.632 0.6304(13) 0.6297(5) η 0 0.0443 0.033 0.0335(25) 0.0362(8) (a) L. Canet, B. Delamotte, D. Mouhanna and J. Vidal, Phys. Rev. B 68 (2003) (a’) L. Canet, B. Delamotte, D. Mouhanna and J. Vidal, Phys. Rev. D 67 (2003) R. Guida and J. Zinn-Justin, J. Phys. A 31 (1998) , (c) M. Hasenbusch, Int. J. Mod. Phys. C 12 (2001) (b) L. C., C.E.A. Saclay 6

  8. Reaction-Diffusion Processes D A O A O • critical exponents : σ 2A A ( p − p c ) β n s ∼ λ O 2A ˛ ν ⊥ [ ν � ] µ ˛ ˛ O A ξ ⊥ [ ξ � ] ∼ ˛ p − p c ν � = ⇒ non-equilibrium phase z = ν ⊥ transition between an active and an absorbing state. H. Hinrichsen, Adv. Phys. 49 (2000) ∂ t n ( t ) = ( σ − µ ) n ( t ) − λ n ( t ) 2 Mean-Field Stationary solutions: n a = 0 and n s = ( σ − µ ) / (2 λ ) ≡ ∆ / (2 λ ) Explicit solution: n ( t ) = n 0 n s / [ n 0 + ( n s − n 0 ) exp( − ∆ t )] processes are diffusion-limited = ⇒ role of density fluctuations But L. C., C.E.A. Saclay 7

  9. Field Theory D A O A O master φ e −S { λ,D,σ } [ φ, ˆ � φ ] D φ D ˆ σ Z = 2A A λ equation O 2A � � � S { λ,D,σ } [ φ, ˆ ˆ φ + U { λ,σ } [ φ, ˆ d d r dt ∂ t − D ∇ 2 � � φ ] = φ φ ] M. Doi, J. Phys. A 9 (1976) , L. Peliti, J. Phys. (Paris) (1984) NPRG out of Equilibrium �� � − 1 � Γ (2) ∂ k Γ k [ ψ, ˆ ˆ k [ ψ, ˆ ψ ] + ˆ ∂ k ˆ ψ ] = 1 • exact flow equation for Γ k : 2 Tr R k R k • Ansatz for reaction-diffusion processes: � � Z k ∇ 2 − D k ∂ t � Γ k ( ψ, ˆ ˆ ψ + U k ( ψ, ˆ d d r dt � � ψ ) = ψ ψ ) L. Canet, B. Delamotte, O. Deloubri` ere and N. Wschebor, Phys. Rev. Lett. 92 (2004) specific model = ⇒ define Γ Λ and its symmetries L. C., C.E.A. Saclay 8

  10. Directed Percolation (DP) D A O A O very large universality class σ A 2A λ ∼ Ising Model for non-equilibrium systems O 2A µ O A √ Z φφ 2 − φ ˆ φ 2 ) + λφ 2 ˆ h φ 2 i d d r dt U [ φ, ˆ ( µ − σ ) φ ˆ 2 λσ ( ˆ φ ] = φ + − → equivalence with the “Reggeon Field Theory” (J. Cardy and R. Sugar, J. Phys. A 13 (1980) ) • NPRG calculation (order ∂ 2 ) ⇒ critical exponents to order ǫ 2 but = 2 2 1.8 1.8 z − upper critical dimension d c = 4 . 1.6 1.6 − no exact solution in d = 1 . 1.4 1.4 numerics exponents exponents NPRG 1.2 1.2 ν 1 1 • rapidity symmetry: 0.8 0.8 n φ ′ ( x ′ , t ′ ) − ˆ = φ ( x, − t ) 0.6 0.6 β ˆ φ ′ ( x ′ , t ′ ) 0.4 0.4 = − φ ( x, − t ) 0.2 0.2 1 1 1.5 1.5 2 2 2.5 2.5 3 3 ⇒ invariants φ ˆ φ and φ − ˆ = φ d d L. Canet et al. Phys. Rev. Lett. 92 (2004) L. C., C.E.A. Saclay 9

  11. Branching and Annihilating Random Walks (BARW) D no spontaneous decay process A O A A O O σ m (m+1)A A M. Bramson and L. Gray, Z. Wahrsch. verw. Gebiete 68 , (1985) λ k O kA • Mean-Field: system always active for σ m � = 0 . • simulations: evidence of absorbing phase transitions in low dimensions. � odd m : DP − → two critical behaviours even m : new universality class (PC) • perturbative RG: J. Cardy and U. C. T¨ auber, Phys. Rev. Lett. 77 (1996) − → lowest order processes are the most relevant: σ σ 2A 3A A A odd-BARW: even-BARW: λ λ O O 2A 2A RG performed at σ ∼ 0 and around d c = 2 d c = 2 — critical dimension of the pure annihilation fixed point . L. C., C.E.A. Saclay 10

  12. Odd-BARW σ 2A φ 2 ) φ 2 + σ (1 − ˆ A U [ φ, ˆ φ ] = − λ (1 − ˆ φ ) φ ˆ φ λ O 2A • simulations: existence of a phase transition in the DP class. H. Takayasu and A. Yu. Tretyakov, Phys. Rev. Lett. 68 (1992) , I. Jensen, J. Phys. A 26 (1993) • perturbative RG: J. Cardy and U. C. T¨ auber, Phys. Rev. Lett. 77 (1996) σ λ A = ⇒ effective action ∼ S DP A+A O generated by renormalisation ∆ R = σ R − µ R µ R λ σ ( , ) µ at a rate A O = ⇒ fluctuations can induce an absorbing transition only for d ≤ 2 . non−trivial transition Mean−Field σ σ σ D D D active active 2 π 4 D σ λ σ λ e π D 2 D active D λ λ λ abs. abs. D D D d 1 2 3 4 L. C., C.E.A. Saclay 11

  13. Odd-BARW: NPRG and Numerical Simulations critical rates: − → NPRG calculation of non-universal quantities = ⇒ accessible through integration the phase diagrams of the flow. 10 n(t) = t - β / ν || − → Monte Carlo simulation 1 0.1 of the Master Equation: n(t) 0.01 0.001 • hypercubic lattice with 2d neighbours ( N ∼ 2 24 ) 1e+04 1e+06 • no restriction of occupation number t L. Canet, H. Chat´ e and B. Delamotte, • time continuous limit = ⇒ ∆ t ≪ 1 Phys. Rev. Lett. 92 (2004) L. C., C.E.A. Saclay 12

  14. Odd-BARW: Mean-Field 3 2.5 2 σ /D 1.5 1 0.5 0 0 2 4 6 8 10 12 λ /D L. C., C.E.A. Saclay 13

  15. Odd-BARW: Perturbative RG d=1 d=2 d=3 3 active phase 2.5 2 absorbing phase σ /D 1.5 1 0.5 0 0 2 4 6 8 10 12 λ /D L. C., C.E.A. Saclay 14

  16. Odd-BARW: NPRG d=1 d=2 d=3 d=4 d=5 d=6 3 active phase 2.5 2 absorbing phase σ /D 1.5 1 0.5 0 0 2 4 6 8 10 12 λ /D L. C., C.E.A. Saclay 15

  17. Odd-BARW: NPRG + Simulations d=1 d=1 d=2 d=2 d=3 d=3 d=4 d=4 d=5 d=5 d=6 d=6 3 3 active phase active phase 2.5 2.5 2 2 absorbing phase absorbing phase σ /D σ /D 1.5 1.5 1 1 0.5 0.5 0 0 0 0 2 2 4 4 6 6 8 8 10 10 12 12 λ /D λ /D L. C., C.E.A. Saclay 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend