some extremal problems for fourier transform on
play

Some extremal problems for Fourier transform on hyperboloid 6th - PowerPoint PPT Presentation

Some extremal problems for Fourier transform on hyperboloid 6th Workshop on Fourier Analysis and Related Fields P ecs, Hungary 2431 August 2017 D. V. Gorbachev, V. I. Ivanov, O. I. Smirnov Tula State University, Tula, Russia 1 / 36


  1. Some extremal problems for Fourier transform on hyperboloid 6th Workshop on Fourier Analysis and Related Fields P´ ecs, Hungary 24–31 August 2017 D. V. Gorbachev, V. I. Ivanov, O. I. Smirnov Tula State University, Tula, Russia 1 / 36

  2. Extremal problems for Fourier transform on R d R d f ( x ) e − i ( x , y ) dx be the Fourier transform. � • Let F ( f )( y ) = Turan problem. For central symmetric convex body V ⊂ R d • it is necessary to calculate the quantity � T ( V , R d ) = sup R d f ( x ) dx , f ∈ C b ( R d ) , if f (0) = 1 , supp f ⊂ V , F ( f )( y ) � 0 . • Euclidean ball: C.L. Siegel (1935, d � 1, [1]), R.P. Boas and M. Kac (1945, d = 1, [2]), D.V. Gorbachev (2001, d > 1, [3]), M.N. Kolountzakis and Sz.Gy. R´ ev´ esz (2003, d > 1, [6]) • Another bodies: V.V. Arestov and E.E. Berdysheva (2001, 2002, tiles polytopes, [4, 5]), M.N. Kolountzakis and Sz.Gy. R´ ev´ esz (2003, spectral domains, [6, 7, 8]) • In all known cases: � 1 � � � T ( V , R d ) = 2 V � = dx , f V = χ 1 2 V ∗ χ 1 2 V . � � 1 2 V 2 / 36

  3. er problem. For central symmetric convex body V ⊂ R d it • Fej´ is necessary to calculate the quantity F ( V , R d ) = sup g (0) , if g ∈ L 1 ( R d ) ∩ C b ( R d ) , g ( y ) � 0 , 1 � supp F − 1 ( g ) ⊂ V . R d g ( y ) dy = 1 , (2 π ) d • Remark. By Paley-Wiener theorem the set of admissible functions coincides with the set of nonnegative entire functions of exponential type, defined by the dual body. • T ( V , R d ) = F ( V , R d ) . • L. Fej´ er (1915, [9]), R.P. Boas and M. Kac (1945, d = 1, [2]) 3 / 36

  4. • Delsarte problem. Calculate the quantity � D ( B s , R d ) = sup R d f ( x ) dx , f ∈ L 1 ( R d ) ∩ C b ( R d ) , f (0) = 1 , f ( x ) � 0 , | x | � s , F ( f )( y ) � 0 . if • M. Viazovska (2016, d=8, [10]), H. Cohn, A. Kumar, S.D. Miller, D. Radchenko, M. Viazovska (2016, d=24, [11]) • Modified Delsarte problem. Calculate the quantity � D ( E r 1 , B s , R d ) = sup R d g ( y ) dy , g ∈ L 1 ( R d ) ∩ C b ( R d ) , if g (0) = 1 , g ( y ) � 0 , | y | ≥ s , supp F − 1 ( g ) ⊂ B r , F − 1 ( g )( y ) � 0 . 2 q d / 2 • Unique case: r = , J d / 2 ( q d / 2 ) = 0. s • V.I. Levenshtein (1979, [12]), V.A. Yudin (1989, [13]), D.V. Gorbachev (2000, [14]), H. Cohn (2002, [15]) 4 / 36

  5. • Bohman problem. Calculate the quantity � B ( B r , R d ) = inf R d | y | 2 g ( y ) dy , if � g ∈ L 1 ( R d ) ∩ C b ( R d ) , g ( y ) � 0 , R d g ( y ) dy = 1 , supp F − 1 ( g ) ⊂ B r . • H. Bohman (1960, d = 1, [16]), V. A. Yudin (1976, d > 1, [17]), W. Ehm, T. Gneiting, D. Richards (2004, d > 1, [18]) • Let g be real continuous function, and let Λ( g ) = sup {| y | : g ( y ) > 0 } . • Logan problem. Calculate the quantity L ( B r , R d ) = inf Λ( g ) , if g ∈ L 1 ( R d ) ∩ C b ( R d ) , supp F − 1 ( g ) ⊂ B r , F − 1 ( g )( y ) � 0 , . g �≡ 0 , • B.F. Logan (1983, d = 1, [19, 20]), N.I. Chernykh (1967, d = 1, [21]), V.A. Yudin (1981, d > 1, [22]), D.V. Gorbachev (2000, d > 1, [23]), E.E. Berdysheva (1999, cube, [24]) 5 / 36

  6. Extremal problems for Hankel transform on R + • Extremal functions in these extremal problems for the ball are radial. By averaging functions over the Euclidean sphere the problems are reduced to analogous problems for the Hankel transform. • Let α � − 1 / 2, and suppose that J α ( t ) is the Bessel function of the order α , j α ( t ) = 2 α Γ( α +1) J α ( t ) � � S d − 1 e i ( x ,ξ ) d ω ( ξ ) , | x | = t � j d / 2 − 1 ( t ) = t α is the normalized Bessel function, q α is minimal positive zero of J α , d ν α ( t ) = (2 α Γ( α + 1)) − 1 t 2 α +1 dt is the power measure on the half-line R + , and � ∞ H α ( λ ) = f ( t ) j α ( λ t ) d ν α ( t ) 0 is the Hankel transform. Note that H − 1 = H α . The restriction of α the Fourier transform on radial functions leads to the Hankel transform with α = d 2 − 1. 6 / 36

  7. • Let χ r ( t ) be characteristic function of the segment [0 , r ]. • Turan problem. Calculate the quantity � ∞ T α ( r , R + ) = sup f ( t ) d ν α ( t ) , 0 if f ∈ C b ( R + ) , f (0) = 1 , supp f ⊂ [0 , r ] , H α ( f )( λ ) � 0 . • er problem. Calculate the quantity Fej´ F α ( r , R + ) = sup g (0) , g ∈ L 1 ( R + , d ν α ) ∩ C b ( R + ) , if g ( y ) � 0 , � ∞ g ( λ ) d ν α ( λ ) = 1 , supp H α ( g ) ⊂ [0 , r ] . 0 • Remark. By Paley-Wiener theorem for the Hankel transform the set of admissible functions coincides with the set of even nonnegative entire functions of exponential type at most r . � r / 2 • Theorem 1. T α ( r , R + ) = F α ( r , R + ) = d ν α ( t ) and 0 g r ( λ ) = c H α ( f r )( λ ) = j 2 f r ( t ) = ( χ r / 2 ∗ χ r / 2 )( t ) , α +1 ( λ r / 2) . 7 / 36

  8. • Delsarte problem. Calculate the quantity � ∞ D α ( s , R + ) = sup f ( t ) d ν α ( t ) , 0 if f ∈ L 1 ( R + , d ν α ) ∩ C b ( R + ) , f (0) = 1 , f ( t ) ≤ 0 , t � s , H α ( f )( λ ) � 0 . • This problem is solved only for α = − 1 / 2 , 3 , 11. • Modified Delsarte problem. Calculate the quantity � ∞ D α ( r , s , R + ) = sup g ( λ ) d ν α ( λ ) , 0 if g ∈ L 1 ( R + , d ν α ) ∩ C b ( R + ) , g (0) = 1 , g ( λ ) � 0 , λ � s , supp H α ( g ) ⊂ [0 , r ] , H α ( g )( λ ) � 0 . � − 1 �� r / 2 Theorem 2. D α ( r , 2 q α +1 • , R + ) = d ν α ( λ ) and r 0 j 2 α +1 ( λ r / 2) g r ( λ ) = � 2 . � 1 − λ r / 2 q α +1 8 / 36

  9. • Bohman problem. Calculate the quantity � ∞ λ 2 g ( λ ) d ν α ( λ ) , B α ( r , R + ) = inf 0 if g ∈ L 1 ( R + , d ν α ) ∩ C b ( R + ) , g ( λ ) � 0 , � ∞ g ( λ ) d ν α ( λ ) = 1 , supp H α ( g ) ⊂ [0 , r ] . 0 � 2 � 2 q α • Theorem 3. B α ( r , R + ) = and r j 2 α ( λ r / 2) g r ( λ ) = � 2 � 2 . � � 1 − λ r / 2 q α 9 / 36

  10. • Let g be real continuous function, and let Λ( g ) = sup { λ : g ( λ ) > 0 } . • Logan problem. Calculate the quantity L α ( r , R + ) = inf Λ( g ) , if g ∈ L 1 ( R + , d ν α ) ∩ C b ( R + ) , g ( λ ) �≡ 0 , supp H α ( g ) ⊂ [0 , r ] , H α ( g )( λ ) � 0 . Theorem 4. L α ( r , R + ) = 2 q α • and r j 2 α ( λ r / 2) g r ( λ ) = � 2 . � 1 − λ r / 2 q α • Theorems 1-4 were proved by D.V. Gorbachev ([14, 3, 23, 25, 26]). He proved the uniqueness of extremal functions. 10 / 36

  11. • A unified method for solving of these problems is to use the Gauss and Markov quadrature formulae on the half-line with nodes at zeros of the Bessel function (C. Frappier and P. Oliver (1993, [27]), G.R. Grozev and Q.I. Rahman (1995, [28]), R.B. Ghanem and C. Frappier (1998, [29])). Let E r • 1 be the set of even entire functions of exponential type at most r , whose restrictions on R + belong to L 1 ( R + , d ν α ), and let 0 < q α, 1 < . . . < q α, n < . . . be positive zeros of J α ( t ). Theorem 5. For any function g ∈ E r • 1 the Gauss quadrature formula with positive weights holds � ∞ ∞ � g ( λ ) d ν α ( λ ) = γ α, k ( r ) g (2 q α, k / r ) . (1) 0 k =1 The series in (1) converges absolutely. Theorem 6. For any function g ∈ E r • 1 the Markov quadrature formula with positive weights holds � ∞ ∞ � g ( λ ) d ν α ( λ ) = γ ′ γ ′ α, 0 ( r ) g (0) + α, k ( r ) g (2 q α +1 , k / r ) . (2) 0 k =1 The series in (2) converges absolutely. 11 / 36

  12. • Let us give an example of the application of the Gauss quadrature formula in the solution of the Bohman problem. Since 1 , λ 2 g ∈ E r an admissible function g ∈ E r 1 , g ( λ ) � 0, and � ∞ 0 g ( λ ) d ν α ( λ ) = 1, then applying the Gauss quadrature formula two times, we obtain � ∞ ∞ λ 2 g ( λ ) d ν α ( λ ) = � γ α, k ( r )(2 q α, k / r ) 2 g (2 q α, k /τ ) 0 k =1 ∞ � (2 q α, 1 / r ) 2 � γ α, k ( r ) g (2 q α, k / r ) k =1 � ∞ = (2 q α, 1 / r ) 2 g ( λ ) d ν α ( λ ) = (2 q α, 1 / r ) 2 . 0 • The extremal function g r ( λ ) has at the points 2 q α, k / r , k � 2, doubling zeros, therefore the following function is extremizer j 2 α ( λ r / 2) g τ ( λ ) = � 2 � 2 . � � 1 − λ r / 2 q α 12 / 36

  13. • Recently (2015, [30]) we proved the Gauss and Markov quadrature formulae on the half-line with nodes at zeros of eigenfunctions of the Shturm–Lioville problem under some natural conditions on weight function w , which, in particular, are fulfilled for the power weight w ( t ) = t 2 α +1 , α � − 1 / 2, and hyperbolic weight w ( t ) = (sinh t ) 2 α +1 (cosh t ) 2 β +1 , α � β � − 1 / 2 . • Let λ 0 � 0, and suppose that the Shturm–Lioville problem ∂ w ( t ) ∂ � � λ 2 + λ 2 � � ∂ t u λ ( t ) + w ( t ) u λ ( t ) = 0 , 0 ∂ t ∂ u λ u λ (0) = 1 , ∂ t (0) = 0 , λ, t ∈ R + , has spectral measure d σ ( λ ) = s ( λ ) d λ , s ( λ ) ≍ λ 2 α +1 , λ → + ∞ , and an eigenfunction ϕ ( t , λ ), which is an even and analytic function of t on R and even entire function of exponential type | t | with respect to λ . Let 0 < λ 1 ( t ) < . . . < λ k ( t ) < . . . be positive zeros of ϕ ( t , λ ) with respect to λ . 13 / 36

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend