on tight security proofs for schnorr signatures
play

On Tight Security Proofs for Schnorr Signatures Nils Fleischhacker 1 - PowerPoint PPT Presentation

On Tight Security Proofs for Schnorr Signatures Nils Fleischhacker 1 Tibor Jager 2 oder 1 Dominique Schr 1 Saarland University 2 Horst G ortz Institute for IT Security, Ruhr-University Bochum December 9, 2014 (Informal) main Result The


  1. On Tight Security Proofs for Schnorr Signatures Nils Fleischhacker 1 Tibor Jager 2 oder 1 Dominique Schr¨ 1 Saarland University 2 Horst G¨ ortz Institute for IT Security, Ruhr-University Bochum December 9, 2014

  2. (Informal) main Result The security of Schnorr signatures cannot be tightly reduced to any natural assumption using a generic reduction. The result holds unconditionally.

  3. Schnorr Signatures [Sch90,Schn91] G = � g � , H Sign ( x, m ) Kgen (1 κ ) Vrfy ( X, m, σ ) $ r ← Z q parse σ as ( R, y ) $ R := g r x ← Z q X := g x c := H ( R, m ) c := H ( R, m ) = X c · R ? return g y return ( x, X ) y := r + x · c return σ = ( R, y ) ◮ Provably secure under DLOG assumption in the ROM [PS96, PS00]. ◮ Previous impossibility results for tight proofs for DLOG and algebraic reductions [PV05,GBL08,Seu12].

  4. Schnorr Signatures [Sch90,Schn91] G = � g � , H Sign ( x, m ) Kgen (1 κ ) Vrfy ( X, m, σ ) $ r ← Z q parse σ as ( R, y ) $ R := g r x ← Z q X := g x c := H ( R, m ) c := H ( R, m ) = X c · R ? return g y return ( x, X ) y := r + x · c return σ = ( R, y ) ◮ Provably secure under DLOG assumption in the ROM [PS96, PS00]. ◮ Previous impossibility results for tight proofs for DLOG and algebraic reductions [PV05,GBL08,Seu12].

  5. Schnorr Signatures [Sch90,Schn91] G = � g � , H Sign ( x, m ) Kgen (1 κ ) Vrfy ( X, m, σ ) $ r ← Z q parse σ as ( R, y ) $ R := g r x ← Z q X := g x c := H ( R, m ) c := H ( R, m ) = X c · R ? return g y return ( x, X ) y := r + x · c return σ = ( R, y ) ◮ Provably secure under DLOG assumption in the ROM [PS96, PS00]. Not tight! ◮ Previous impossibility results for tight proofs for DLOG and algebraic reductions [PV05,GBL08,Seu12].

  6. Why do we care about tightness? g x R pk, m UUNF − NM Π σ x ′

  7. Why do we care about tightness? g x R pk, m UUNF − NM Π Weaker Definition of Security = Stronger Negative Result σ x ′

  8. Why do we care about tightness? g x R pk, m UUNF − NM Π σ x ′ t

  9. Why do we care about tightness? g x R pk, m UUNF − NM Π σ x ′ f ( t ) = t t

  10. Why do we care about tightness? g x R pk, m UUNF − NM Π σ x ′ f ( t ) = 2 t t

  11. Why do we care about tightness? g x R pk, m q R ′ , m ′ UUNF − NM Π H ( R ′ , m ′ ) σ x ′ f ( t, q ) = q · t t

  12. Meta-Reductions [BV98] Π R UUNF − NM A

  13. Meta-Reductions [BV98] M Π Π ’ R UUNF − NM A

  14. Previous Work on Lower Bounds PV05 1 Bound q 1 / 2 algebraic Reduction (OM)DL Assumption OMDL

  15. Previous Work on Lower Bounds PV05 GBL08 1 1 Bound q 1 / 2 q 2 / 3 algebraic algebraic Reduction (OM)DL (OM)DL Assumption OMDL OMDL

  16. Previous Work on Lower Bounds PV05 GBL08 Seurin12 1 1 O ( 1 Bound q ) q 1 / 2 q 2 / 3 algebraic algebraic algebraic Reduction (OM)DL (OM)DL (OM)DL Assumption OMDL OMDL OMDL

  17. Previous Work on Lower Bounds PV05 GBL08 Seurin12 Our Work 1 1 O ( 1 O ( 1 Bound q ) q ) q 1 / 2 q 2 / 3 algebraic algebraic algebraic generic Reduction representation (OM)DL (OM)DL (OM)DL invariant Assumption OMDL OMDL OMDL none

  18. Algebraic vs. Generic Reductions An algebraic reduction only A generic reduction works regardless of the representation computes group elements using group operations. of the group. φ : G → { 0 , 1 } 2 n � G , g � g x 1 , g x 2 ( x 1 , x 2 ) , g y φ ( g x 1 ) , φ ( g x 2 ) φ ( g a ) , φ ( g b ) , ◦ R O R Ext φ ( g a ◦ g b ) g y y φ ( g y )

  19. So... GGM? No! φ ( A ) , φ ( B ) ( φ ( i ) , φ ( j ) , ◦ ) O φ ( i ◦ j ) R φ ( C ) , φ ( D )

  20. So... GGM? No! φ ( A ) , φ ( B ) ( φ ( i ) , φ ( j ) , ◦ ) O φ ( i ◦ j ) R A φ ( C ) , φ ( D )

  21. So... GGM? No! A, B φ ( A ) , φ ( B ) ( φ ( i ) , φ ( j ) , ◦ ) O φ ( i ◦ j ) R φ ( X ) , m, ω X, m, ω A ( φ ( R ) , y ) ( R, y ) φ ( C ) , φ ( D ) C, D

  22. So... GGM? No! A, B φ ( A ) , φ ( B ) ( φ ( i ) , φ ( j ) , ◦ ) O φ ( i ◦ j ) R φ ( X ) , m, ω X, m, ω A ( φ ( R ) , y ) ( R, y ) φ ( C ) , φ ( D ) C, D

  23. Ok, so how does it work? Vanilla Reductions proc A ( X, m, ω ) ( R 1 , . . . , R q ) ← G q for all i ∈ [ q ] c i = H ( R i , m ) α ← [ q ] y := log g X c α R α return ( R α , y ) .

  24. Ok, so how does it work? Vanilla Reductions Vanilla Reduction: ◮ Runs A once ◮ Does not rewind Result: ◮ Rules out all generic vanilla reductions ◮ Even tight reductions

  25. Ok, so how does it work? Vanilla Reductions proc A ( X, m, ω ) ( R 1 , . . . , R q ) ← G q for all i ∈ [ q ] c i = H ( R i , m ) α ← [ q ] y := log g X c α R α return ( R α , y ) .

  26. Ok, so how does it work? Vanilla Reductions C 1 , . . . , C u , C ′ L G L E φ ( C 1 ) , . . . , φ ( C u ) , C ′ M C 1 E 1 . . . . . . C u E u O R 1 E u +1 R . . . . . . R q E u + q A

  27. Ok, so how does it work? Vanilla Reductions C 1 , . . . , C u , C ′ L G L E φ ( C 1 ) , . . . , φ ( C u ) , C ′ M C 1 E 1 . . . . . . ( E i , E j , × ) C u E u O R 1 E u +1 E u + q +1 R . . . . . . R q E u + q A E u + q +1 A

  28. Ok, so how does it work? Vanilla Reductions C 1 , . . . , C u , C ′ L G L E φ ( C 1 ) , . . . , φ ( C u ) , C ′ M C 1 E 1 . . . . . . ( E i , E j , × ) C u E u O R 1 E u +1 E u + q +1 R . . . . . . R q E u + q φ ( X ) , m A E u + q +1 A ( φ ( R ) , y )

  29. Ok, so how does it work? Vanilla Reductions C 1 , . . . , C u , C ′ L G L E L V φ ( C 1 ) , . . . , φ ( C u ) , C ′ M C 1 E 1 (1 , 0 , ... ) . . . . . . . . . ( E i , E j , × ) C u E u ( ..., 0 , 1 , 0 , ... ) O R 1 E u +1 ( ..., 0 , 1 , 0 , ... ) E u + q +1 R . . . . . . . . . R q E u + q ( ..., 0 , 1) φ ( X ) , m A E u + q +1 V i + V j A ( φ ( R ) , y )

  30. Ok, so how does it work? Vanilla Reductions proc A ( φ ( X ) , m, ω ) : for all i ∈ [ q ] L G L E L V . . . c i = R . H ( φ ( R i ) , m ) . . . . . . α ← [ q ] R α E u + α V u + α . . . y := log g X c α R α . . . . . . G u + q +1 E u + q +1 V u + q +1

  31. Ok, so how does it work? Vanilla Reductions proc A ( φ ( X ) , m, ω ) : for all i ∈ [ q ] L G L E L V . . . c i = R . H ( φ ( R i ) , m ) . . . . . . α ← [ q ] R α E u + α V u + α . . . R ∗ α := g y X − c α . . . y ← Z p ; . . . G u + q +1 E u + q +1 V u + q +1

  32. Ok, so how does it work? Vanilla Reductions proc A ( φ ( X ) , m, ω ) : for all i ∈ [ q ] L G L E L V . . . c i = R . H ( φ ( R i ) , m ) . . . . . . α ← [ q ] R ∗ E u + α V u + α α . . . R ∗ α := g y X − c α . . . y ← Z p ; . . . G u + q +1 E u + q +1 V u + q +1

  33. Ok, so how does it work? Vanilla Reductions proc A ( φ ( X ) , m, ω ) : for all i ∈ [ q ] L G L E L V . . . c i = R . H ( φ ( R i ) , m ) . . . . . . α ← [ q ] R ∗ E u + α V u + α α . . . R ∗ α := g y X − c α . . . y ← Z p ; . . . G u + q +1 E u + q +1 V u + q +1 for j = 1 , . . . , |L G | do u + q V j � G i := i · G j j =1 return ( y, φ ( R ∗ α ))

  34. Will this not trip up the Reduction? R is only able to notice the reprogramming if there exist i, j such that G i = G j before the reprogramming and G i � = G j after reprogramming, or the other way round. This happens with probability at most 2( u + q + t R ) 2 ≤ negl p

  35. Summary & Conclusion The security of Schnorr signatures cannot be reduced to any representation invariant assumption tighter than O (1 /q ) using a generic fully blackbox reduction.

  36. Thank You! Nils Fleischhacker fleischhacker@cs.uni-saarland.de

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend