smoothing of sign test and approximation of its p value
play

Smoothing of sign test and approximation of its p -value Mengxin LU - PowerPoint PPT Presentation

Smoothing of sign test and approximation of its p -value Mengxin LU Yoshihiko MAESONO Kyushu Univ., Grad. Sch. Math. Kyushu Univ., Fac. Math. 1 1. Introduction X 1 , X 2 , , X n : i.i.d. F ( x ) F is symmetric distr., i.e. F (


  1. Smoothing of sign test and approximation of its p -value Mengxin LU Yoshihiko MAESONO Kyushu Univ., Grad. Sch. Math. Kyushu Univ., Fac. Math. 1

  2. 1. Introduction X 1 , X 2 , · · · , X n : i.i.d. F ( x − θ ) F is symmetric distr., i.e. F ( − x ) = 1 − F ( x ) ( f ( − x ) = f ( x )) One sample testing problem: Null-hypothesis: H 0 : θ = 0 vs. Alternative: H 1 : θ > 0 [Test statistics] t -test √ n ( X ) n n 1 ( X i − X ) 2 � � √ T = , X = X i , V = n − 1 V i =1 i =1 2

  3. Sign test n � 1 , x ≥ 0 � S = ψ ( X i ) , ψ ( x ) = 0 , x < 0 i =1 Mann-Whitney test ( Wilcoxon’s signed rank test ) � W = ψ ( X i + X j ) 0 ≤ i ≤ j ≤ n 3

  4. Under null hypothesis H 0 , distributions of S, W do not depend on F (distribution-free) For observed values s, w of S, W , we evaluate significance probabilities P 0 ( S ≥ s ) , P 0 ( W ≥ w ) If p -value is small enough, we reject H 0 For large n it is quite difficult to obtain exact distribution Normal approximation S − E 0 ( S ) L − → N (0 , 1) , � V ar 0 ( S ) 4

  5. W − E 0 ( W ) L − → N (0 , 1) � V ar 0 ( W ) Using ( continuity correction ) p -vales are given by P 0 ( S ≥ s ) = P 0 (2( S − n ≥ 2( s − n 2 − 0 . 5) 2 − 0 . 5) √ n √ n ) ≈ 1 − Φ(2( s − n 2 − 0 . 5) √ n ) , P 0 ( W ≥ w ) √ √ 24( W − n ( n +1) 24( w − n ( n +1) − 0 . 5) − 0 . 5) 4 4 = P 0 ( ≥ ) � � n ( n + 1)(2 n + 1) n ( n + 1)(2 n + 1) √ 24( w − n ( n +1) − 0 . 5) 4 ≈ 1 − Φ( ) � n ( n + 1)(2 n + 1) 5

  6. 2. Smoothing sign based on kernel estimation Purpose of this talk : constructing smoothing sign test Brown, Hall, Young (2001, B.K.) : Smoothed sign test Median ˜ θ n ˜ � θ = argmin | x i − θ | i =1 Smoothed median: { ( x i − θ ) 2 + ( x j − θ ) 2 } 1 / 2 ˆ � θ = argmin i<j Smoothed sign test : based on the smoothed median estimator 6

  7. Proposed test has different Pitman A.R.E. The proposed test statistic is not distribution-free The asymptotic distribution depend on the underlying distribution We have to make estimators They also obtained an Edgeworth expansion, but it contains unknown parameters 7

  8. Let us consider empirical distribution n F n ( x 0 ) = 1 � I ( X i ≤ x 0 ) n i =1 If F ( x ) is symmetric around 0, F (0) = 1 2 If alternative H 1 is true, F n (0) is an unbiased estimator of F ( − θ ) Under H 1 , F n (0) takes smaller value than 1 2 , stochastically Under H 0 , nF n (0) is a binomial B ( n, 1 2 ) Normal approximation is valid, but the Edgeworth expansion is invalid 8

  9. [Test statistic based on kernel estimator] Let us assume a kernel function k ( u ) is 2nd order � ∞ � ∞ k ( u ) du = 1 , uk ( u ) du = 0 −∞ −∞ Let us define � t W ( t ) = k ( u ) du −∞ Kernel estmator of F ( x 0 ) is given by n F n ( x 0 ) = 1 W ( x 0 − X i ˜ � ) n h n i =1 where h n is bandwidth h n → 0 , nh n → ∞ ( n → ∞ ) For testing H 0 , we can use S = ˜ ˜ F n (0) 9

  10. This test is regarded as smoothed test of S ( F n (0) ) For observed value ˜ s , significance probability is P 0 ( ˜ S ≤ ˜ s ) ˜ S is not distribution-free. In the sequel, we use the bandwidth h n = n − 1 4 , or h n = n − 1 3 ˜ S is a sum of i.i.d. random variables. If n →∞ V ar [ W ( − X i 0 < lim )] < ∞ , h n ˜ S is asymptotically normal S − E ( ˜ ˜ S ) L − → N (0 , 1) � V ar ( ˜ S ) 10

  11. Its asymptotic variance is given by n →∞ nV ar θ ( ˜ lim S ) = F ( − θ )(1 − F ( − θ )) = (1 − F ( θ )) F ( θ ) Further we have S n ( θ ) = E θ ( ˜ µ ˜ S ) = F ( − θ ) + O ( h n ) , S ) = F (0)(1 − F (0)) + O ( h n ) = 1 nV ar 0 ( ˜ 4 + O ( h n ) , µ ′ S n (0) ˜ = e ( ˜ lim S ) = − 2 f (0) � n →∞ nV ar 0 ( ˜ S n ) This efficacy coinsides to one of the sign test S . Thus S and ˜ S have same Pitman A.R.E. 11

  12. 3. Approximation of p -value based on Edgeworth Edgeworth expansion for kernel type estimator ˜ F n ( x 0 ) of F ( x 0 ) Garc´ ıa-Soid´ an et al. (1997): They showed the validity of the expansion, but not obtained an explicit form of the expansion Huang and Maesono (2013) Assuming h n = n − 1 4 or h n = n − 1 3 , obtained the explicit form of the expansion 12

  13. [When h n = n − 1 4 ] Under some regularity conditions ˜ F n ( x 0 ) − F ( x 0 ) ≤ y ) = G ( y ) + o ( n − 1 P ( 2 ) (1) √ n � n W ( x 0 − X 1 V ar ( 1 )) h n where G ( y ) = Φ( y ) + D 1 + n − 1 4 D 2 + n − 1 2 D 3 . (2) D 1 = − φ ( y ) C 2 + 1 2 − 1 2 + 1 2 φ ′ ( y ) C 2 6 φ (2) ( y ) C 3 24 φ (3) ( y ) C 4 2 − 1 2 + 1 120 φ (4) ( y ) C 5 720 φ (5) ( y ) C 6 2 , D 2 = − φ ( y ) C 2 + φ ′ ( y ) C 2 C 3 − 1 2 C 3 + 1 6 φ (2) ( y ) C 2 24 φ (3) ( y ) C 3 2 C 3 , 13

  14. D 3 = − φ ( y ) C 4 + 1 3 + C 2 C 4 ) − 1 6 B 3 , 0 ( φ ( y )( y 2 − 1) 2 φ ′ ( y )( C 2 − C 2 [ φ ′ ( y )( y 2 − 1) + 2 yφ ( y )] + C 2 2 [ φ ( y ) + 2 yφ ′ ( y ) +1 2 [ φ ′ ( y ) + yφ (2) ( y ) + 1 2( y 2 − 1) φ (2) ( y )] − C 3 6( y 2 − 1) φ (3) ( y )]) Further � ∞ W i ( u ) k ( u ) u j du, A i,j = −∞ 1 − 2 F ( x 0 ) B 3 , 0 = , � F ( x 0 )(1 − F ( x 0 )) 14

  15. B 3 , 1 = 3 f ( x 0 )( A 1 , 1 − A 1 , 2 ) , 3 [ F ( x 0 )(1 − F ( x 0 ))] 2 f ′ ( x 0 ) A 0 , 2 C 2 = , � F ( x 0 )(1 − F ( x 0 )) f ′′ ( x 0 ) A 0 , 3 + f ( x 0 ) f ′ ( x 0 ) A 0 , 2 A 1 , 1 C 3 = − , 3 � 6 F ( x 0 )(1 − F ( x 0 )) 2[ F ( x 0 )(1 − F ( x 0 )] 2 f (3) ( x 0 ) A 0 , 4 − f ( x 0 ) f ′′ ( x 0 ) A 0 , 3 A 1 , 1 C 4 = 3 � F ( x 0 )(1 − F ( x 0 )) 6[ F ( x 0 )(1 − F ( x 0 ))] 2 f 2 ( x 0 ) f ′ ( x 0 ) A 0 , 2 A 2 − ( f ′ ( x 0 )) 2 A 0 , 2 ( A 1 , 2 − F ( x 0 ) A 0 , 2 ) 1 , 1 + 3 5 4[ F ( x 0 )(1 − F ( x 0 ))] 4[ F ( x 0 )(1 − F ( x 0 )] 2 2 15

  16. When we use ˜ S , note that x 0 = 0 If k ( − u ) = k ( u ) is symmetric, we have W ( u ) = 1 − W ( − u ), and so � ∞ � ∞ W ( u ) k ( u ) u 2 du = { 1 − W ( − u ) } k ( u ) u 2 du A 1 , 2 = −∞ −∞ � ∞ � ∞ � ∞ { 1 − W ( t ) } k ( − t )( − t ) 2 dt k ( t ) t 2 dt − W ( t ) k ( t ) t 2 dt = −∞ −∞ −∞ � ∞ W ( t ) k ( t ) t 2 dt = − A 1 , 2 = − −∞ Thus A 1 , 2 = 0. If the following conditions on the kernel � ∞ � ∞ k ( z ) z 2 dz = k ( z ) z 4 dz = 0 , k ( − u ) = k ( u ) , (3) −∞ −∞ � ∞ W ( z ) k ( z ) zdz = 0 (4) −∞ 16

  17. are satisfied, we have C 2 = C 3 = C 4 = 0. Thus we have the equation (1) 2 B 3 , 0 G ( y ) = Φ( y ) − n − 1 6 φ ( y )( y 2 − 1) Further, since F (0) = 1 2 , we have B 3 , 0 = 0 Also S ) = 1 2 + o ( n − 3 E 0 ( ˜ 2 ) , S ) = 1 4 n + o ( n − 3 V 0 ( ˜ 2 ) Therefore the conditions (3) and (4) are satisfied, we have an improve- 17

  18. ment of the normal approximation P (2 √ n ( ˜ S − 1 2) ≤ y ) = Φ( y ) + o ( n − 1 2 ) [Remark 1] In addition to (3), (4), if the condition � ∞ W ( z ) k ( z ) z 3 dz = 0 A 1 , 3 = −∞ is satisfied, we have the Edgeworth expansion with remainder term o ( n − 3 4 ), and the expansion does not include unknown parameters . 18

  19. [When h n = n − 1 3 ] • If (3), (4) are satisfied, the residual term is o ( n − 3 4 ) • If (3), (4) and A 1 , 3 = A 2 , 2 = 0 are satisfied, the residual term is o ( n − 1 ). And the expansion does not have unknown parameters. The n − 1 term is 1 − 3 F (0) + 3 F 3 (0) F (0)(1 − F (0)) [When h n = n − δ ( 1 3 < δ < 1 2 ) のとき ] • (3), (4) are satisfied, the residual term is o ( n − 1 ), and the expansion does not have unknown parameters. 19

  20. [Remark 2] The kernel k ( u ) which satisfies (3) and (4) is given by k ( u ) = ( a 0 + a 1 | u | + a 2 u 2 + a 3 | u | 3 ) I ( | u | ≤ 1) where √ √ a 0 = 45 65) , a 1 = 9 64(1 + 4(5 − 3 65) , √ √ a 2 = 105 64 ( − 23 + 9 65) , a 3 = 9(3 − 65) It is possible to make a kernel which satisfies A 1 , 3 = A 2 , 2 = 0. The kernel is quite complicate. 20

  21. [Sketch of the proofs ] Let us define W 1 = W ( x 0 − X 1 ) h n Evaluation of bias Using Taylor expansion, we have W ( x 0 − y � E ( W 1 ) = ) f ( y ) dy h n � = h n W ( z ) f ( x 0 − h n Z ) dz = h n ( − 1 ) W ( z ) F ( x 0 − h n z ) | + ∞ −∞ h n 21

  22. − h n ( − 1 � ) k ( z ) F ( x 0 − h n z ) dz h n � = k ( z ) F ( x 0 − h n z ) dz k ( z )( F ( x 0 ) − h n zf ( x 0 ) + 1 � ′ ( x 0 ) + · · · ) dz 2( h n z ) 2 f = � � = F ( x 0 ) k ( z ) dz − f ( x 0 ) h n zk ( z ) dz +1 � ′ ( x 0 ) h 2 z 2 k ( z ) dz + · · · 2 f n = F ( x 0 ) + 1 ′ ( x 0 ) A 0 , 2 + 1 2 h 2 6 h 3 n f ′′ ( x 0 ) A 0 , 3 n f + 1 24 h 4 n f (3) ( x 0 ) A 0 , 4 + O ( h 5 n ) 22

  23. If k ( u ) is 4-th order kernel, bias is O ( h 4 n ) and A 0 , 1 = A 0 , 2 = A 0 , 3 = 0 If k ( u ) is 6-th order kernel, bias is O ( h 5 n ) and A 0 , 1 = A 0 , 2 = A 0 , 3 = A 0 , 4 = A 0 , 5 = 0 If k ( u ) is ℓ -th order kernel � ∞ � ∞ u m − 1 k ( u ) du = 0 (2 ≤ m ≤ ℓ − 1) , u ℓ k ( u ) du � = 0 −∞ −∞ 23

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend