small medium and giant magnons
play

Small, Medium and Giant Magnons Gordon W. Semenoff University of - PowerPoint PPT Presentation

Small, Medium and Giant Magnons Gordon W. Semenoff University of British Columbia D.Astolfi, V.Forini, G.Grignani and G.Semenoff, hep-th/0702043 B.Ramadanovic and G.Semenoff, arXiv:0803.4028 [hep-th] G.Grignani and G.Semenoff, to appear GGI,


  1. Small, Medium and Giant Magnons Gordon W. Semenoff University of British Columbia D.Astolfi, V.Forini, G.Grignani and G.Semenoff, hep-th/0702043 B.Ramadanovic and G.Semenoff, arXiv:0803.4028 [hep-th] G.Grignani and G.Semenoff, to appear GGI, May 8 , 2008

  2. The AdS/CFT correspondence asserts an exact duality IIB string on AdS 5 × S 5 ↔ N = 4 Yang-Mills N units of 5-form flux on S 5 ↔ SU(N) gauge group radius of curvature R 4 /α ′ 2 g 2 ′ tHooft coupling = Y M N ≡ λ g 2 closed string coupling 4 πg s = Y M Energies of strings ↔ conformal dimensions of operators Free strings on AdS 5 × S 5 limit N → ∞ , λ = g 2 ↔ Y M N fixed Weak coupling sigma model ↔ strong gauge theory √ λ | g | g ab ∂ a X µ G µν ∂ b X ν ↔ S = N � � d 4 x Tr F 2 S = µν 4 π 4 λ GGI, May 8 , 2008

  3. Finding spectrum of planar N = 4 Yang-Mills has a spin-chain analogy : ( J.Minahan, K.Zarembo hep-th/0212208 ) For example: scalar fields of N = 4 super-conformal YM: Φ 1 , ..., Φ 6 Z = Φ 1 + i Φ 2 Φ = Φ 3 + i Φ 4 , Ψ = Φ 5 + i Φ 6 , Large N planar limit ( N → ∞ , λ = g 2 Y M N fixed) : conformal dimensions of composite operators J Z ′ s + M Φ ′ s Tr [ Z (0) Z (0)Φ(0) Z (0)Φ(0) Z (0) ... ] YM interactions: ∆ = J + M + λ (one loop) + λ 2 (two loops) + . . . Resolving degeneracy ∼ solving PSU (2 , 2 | 4) spin chain with long ranged interactions GGI, May 8 , 2008

  4. Ferromagnetic ground state of the spin chain: Tr Z J 1 2 -BPS operator, dimension ∆ = J protected by supersymmetry Symmetry of ground state SU (2 | 2) × SU (2 | 2) × R 1 ⊂ SU (2 , 2 | 4) One flipped spin is a “Magnon” – short multiplet of this residual symmetry algebra Tr Z J − 1 D µ Z , Tr Z J Φ i ˙ β Tr Z J χ β Tr Z J χ α , α ˙ with ∆ = J + 1 Because of cyclicity of the trace, they have zero magnon momentum e ipk Tr Z k Φ Z J − k ∼ δ ( p ) � k GGI, May 8 , 2008

  5. Two magnons J − 1 � e ip 1 k 1 + ip 2 k 2 Tr ZZ... Φ k 1 ... Φ k 2 ...Z ∼ δ ( p 1 + p 2 ) k 1 ,k 2 =0 ∆ − J = 2 + λ (one − loop) + λ 2 (two − loop) + . . . GGI, May 8 , 2008

  6. Two magnons at one loop λ � (1 − P i,i +1 ) H one loop = 8 π 2 i � ψ ( k 1 , k 2 )Tr ZZ... Φ k 1 ... Φ k 2 ...Z L = J + 2 1 ≤ k 1 <k 2 ≤ L ψ ( k 1 , k 2 ) = e ip 1 k 1 + p 2 k 2 + S ( p 1 , p 2 ) e ip 2 k 1 + p 1 k 2 λ sin 2 p 1 2 + sin 2 p 2 � � E = L + + ... 2 π 2 2 S = e ip 1 + ip 2 − 2 e ip 1 + 1 e ip 1 + ip 2 − 2 e ip 2 + 1 Periodic boundary conditions ψ ( k 1 , k 2 ) = ψ ( k 2 , k 1 + L ) → “Bethe equations” e iLp 1 = S ( p 1 , p 2 ) , e iLp 2 = S ( p 2 , p 1 ) Cyclicity of the trace implies p 1 + p 2 = 0 GGI, May 8 , 2008

  7. • The spin chain is thought to be integrable and solvable using a Bethe Ansatz N.Beisert, B.Eden, M.Staudacher hep-th/0610251 • Problem is simpler in the large volume limit. – planar Yang-Mills theory N → ∞ , λ = g 2 YM N fixed – infinite volume J → ∞ with magnon momenta and λ fixed • Bethe Ansatz has distinct quasi-particles. In infinite volume limit, integrability implies scattering with a factorized S-matrix. • quasi-particle is a magnon • 2-body S-matrix almost completely determined by (super-)symmetry: N.Beisert hep-th/0603038,0606214 • once infinite J spectrum is known – reconstruct finite J GGI, May 8 , 2008

  8. In the SU(2) sector, the spin chain Hamiltonian is “known” to four loops ∞ � n � λ � H = H n 16 π 2 n =0 Permutation operator: L � { a, b, c, ... } = P p + a P p + b P p + c ... P k = P k,k +1 , p =1 {} H 1 = 2 {} − 2 { 1 } H 0 = , − 8 {} + 12 { 1 } − 2 ( { 1 , 2 } + { 2 , 1 } ) H 2 = H 3 = 60 {} − 104 { 1 } + 4 { 1 , 3 } + 24 ( { 1 , 2 } + { 2 , 1 } ) − 4 i� 2 ( { 1 , 2 , 3 } + { 2 , 1 , 3 } ) − 4 ( { 1 , 2 , 3 } + { 3 , 2 , 1 } ) GGI, May 8 , 2008

  9. ( − 560 − 4 β ) {} + (1072 + 12 β + 8 � 3 a ) { 1 } H 4 = ( − 84 − 6 β − 4 � 3 a ) { 1 , 3 } + − 4 { 1 , 4 } + ( − 302 − 4 β − 8 � 3 a ) ( { 1 , 2 } + { 2 , 1 } ) (4 β + 4 � 3 a + 2 i� 3 c − 4 i� 3 d ) { 1 , 3 , 2 } + + (4 β + 4 � 3 a − 2 i� 3 c + 4 i� 3 d ) { 1 , 1 , 3 } (4 − 2 i� 3 a ) ( { 1 , 2 , 4 } + { 1 , 4 , 3 } ) + (4 + 2 i� 3 a ) ( { 1 , 3 , 4 } + { 2 , 1 , 4 } ) + + (96 + 4 � 3 a ) ( { 1 , 2 , 3 } + { 3 , 2 , 1 } ) ( − 12 − 2 β − 4 � 3 a ) { 2 , 1 , 3 , 2 } + + (18 + 4 � 3 a ) ( { 1 , 3 , 2 , 4 } + { 2 , 1 , 4 , 3 } ) + ( − 8 − 2 � 3 a − 2 i� 3 b ) ( { 1 , 2 , 4 , 3 } + { 1 , 4 , 3 , 2 } ) ( − 8 − 2 � 3 a + 2 i� 3 b ) ( { 2 , 1 , 3 , 4 } + { 3 , 2 , 1 , 4 } ) + − 10 ( { 1 , 2 , 3 , 4 } + { 4 , 3 , 2 , 1 } ) , β = 4 ζ (3) GGI, May 8 , 2008

  10. Recent computations of the spectrum of short operators suggest that the BES Bethe Ansatz is valid only in the J → ∞ limit. F. Fiamberti, A. Santambroggio, C. Seig, D. Zanon, “Wrapping at four loops” ARXIV:0712.3522 � 2 � 3 � � � � λ λ λ ∆ K = 4 + 12 − 48 + 336 16 π 2 16 π 2 16 π 2 � 4 � λ − (2584 − 384 ζ (3) + 1440 ζ (5)) + ... 16 π 2 C. Keeler and N.Mann, “Wrapping interactions and the Konishi Operator”, ARXIV:0801.1661 � 2 � 3 � λ � � λ � λ ∆ K = 4 + 12 − 48 + 336 16 π 2 16 π 2 16 π 2 � 4 � λ − (2607 + 28 ζ (3) + 140 ζ (5)) + ... 16 π 2 GGI, May 8 , 2008

  11. Deviations from the large spin limit are due to “wrapping interactions”. J.Ambjorn, R.Janik, Ch.Kristjansen, hep-th/0510171 GGI, May 8 , 2008

  12. Magnon with p mag � = 0 ... ... � e ipx ...ZZZ Φ ZZZ... x infinitely long spin chain – isolate a single magnon � 1 + λ π 2 sin 2 p mag E = ∆ − J = , p mag = magnon momentum 2 • Compatible with perturbative YM to three loops • all-loops integrability Ans¨ atze at large J • agrees with BMN limit • Beisert: magnon are 1 2 − BPS states of centrally extended superalgebra SU (2 | 2) × SU (2 | 2) × R 3 • Strong coupling limit λ → ∞ from string dual − → GGI, May 8 , 2008

  13. Hofman-Maldacena hep-th/0604135 identified string dual: Giant Magnon : Soliton solution of classical string sigma model on R 1 × S 2 φ ′ , all others periodic angle coordinate open φ ( r ) − φ ( − r ) = p mag J ( = − i∂/∂φ ) → ∞ θ ( ± r ) → π/ 2 √ � � sin p mag π 2 sin 2 p mag λ 1 + λ � � E = ← at large λ � π 2 2 What about corrections to the large J limit? GGI, May 8 , 2008

  14. Finite size corrections? • finite size and strong coupling from string – apparently yes! Arutyunov, Frolov, Zamaklar hep-th/0606126 √ � � λ � sin p mag 1 − 4 e 2 sin 2 p mag � � e −R + ... � · E = � � π 2 2 • Hubbard model matches exponent, √ R = 2 πJ/ λ | sin p mag / 2 | + ap mag cot p mag / 2 but not pefactor • Bethe Ansatz – maybe? – the integrable Hubbard model agrees with perturbation theory to a few loops, then is extrapolated to large λ and large J , √ 2 π 2 √ � � λ � sin p mag � � λ | sin p mag / 2 | + ... λ sin 2 p mag / 2 e − 2 πJ/ � · 1 − E H = � � π 2 • Perturbative gauge theory – none! – at least for J > #loops. GGI, May 8 , 2008

  15. • Finite size classical Giant Magnon found by Arutyunov, Frolov, Zamlakar hep-th/0606126 √ � λ � sin p mag 1 − 4 e 2 sin 2 p mag � � e −R − � · E = � � π 2 2 e 4 sin 2 p mag 4 R 2 (1 + cos p ) + 2 R (2 + 3 cos p mag + � − 2 + ap mag sin p mag ) + 7 + 6 cos p mag + 6 ap mag sin p mag + e − 2 R + ... a 2 p 2 � � mag (1 − cos p mag ) + √ R = 2 πJ/ λ | sin p mag / 2 | + ap mag cot p mag / 2 • but depend on gauge-fixing parameter a • There is no state of N = 4 SYM dual to a single giant magnon with J < ∞ . Gauge theory dual of finite size giant magnon? GGI, May 8 , 2008

  16. Orbifold AdS 5 × S 5 → AdS 5 × S 5 /Z M Identify longitude on 2-sphere by the action of a discrete group Z M : φ → φ + 2 π/M Non-interacting strings: • choose subset of momenta J = integer · M (rather than J =integer in un-orbifold) • Include wrapped strings ∆ φ = 2 πm/M Giant magnon = wrapped closed string Open ends of magnon are identified identified: p mag = 2 πm/M GGI, May 8 , 2008

  17. Giant magnon is a physical state on orbifold D.Astolfi, V.Forini, G.Grignani and G.Semenoff hep-th/0702043 Finite size corrections are computable by asymptotic expansion in J (and identical to Arutyunov, Frolov, Zamlakar hep-th/0606126 in a = 0 gauge) √ λ � sin p mag � 1 − 4 sin 2 p mag � J � � − 2 − 2 π √ λ | sin p mag / 2 | + . . . ∆ − J = e � � π 2 2 � The exponential correction has been reproduced from BES by R.Janik,T.Lukowski, ArXiv:0708:2208 J. Minahan and O.Ohlsson Sax, “Finite size effects for giant magnons on physical strings” arXiv:0801.2064 N. Gromov, S.Shafer-Nameki, P.Viera, “Quantum wrapped giant magnon”, arXiv:0801.3671 GGI, May 8 , 2008

  18. Why orbifold? String on flat space with magnon boundary condition: X 1 ( τ, σ + 2 π ) = X 1 ( τ, σ ) + p mag and all other variables, including ∂ a X 1 ( τ, σ ) periodic. � ∂ 2 ∂τ 2 − ∂ 2 � σ X 1 = 0 → X 1 ( τ, σ ) = x 1 + p 1 τ + p mag 2 π +oscillators ∂σ 2 Virasoro constraints are 2 p µ p µ + p 2 L 0 = α ′ mag L 0 + ˜ 4 π 2 α ′ + N + ˜ 0 = N − 2 L 0 = p 1 p mag L 0 − ˜ + N − ˜ 0 = N 2 π has no solution unless p 1 p mag = 2 π · integer Indistinguishable from string where X 1 ∼ X 1 + p mag = Z -orbifold of flat space GGI, May 8 , 2008

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend