direct detection of light
play

Direct detection of light Zhengkang Kevin Zhang dark matter with - PowerPoint PPT Presentation

Direct detection of light Zhengkang Kevin Zhang dark matter with magnons UC Berkeley Based on: Tanner Trickle, ZZ, Kathryn Zurek, arXiv: 1905.13744. Fermilab/KICP, Jun. 2019 Roadmap Collective excitations as a path forward for light DM


  1. Direct detection of light Zhengkang “Kevin” Zhang dark matter with magnons UC Berkeley Based on: Tanner Trickle, ZZ, Kathryn Zurek, arXiv: 1905.13744. Fermilab/KICP, Jun. 2019

  2. Roadmap Collective excitations as a path forward for light DM Kinematic matching in Phonons : detect spin-independent interactions DM direct detection Kinematics Dynamics MeV m χ = 100 keV Magnons : detect spin-dependent interactions l i keV o electron excitations in c e r semiconductors r a e Δ E l c u n eV collective excitations: phonons, magnons meV eV keV MeV GeV q Zhengkang “Kevin” Zhang (UC Berkeley) 2 Fermilab/KICP, Jun. 2019

  3. Kinematic matching q 2 1 ( m χ v ) 2 − ( m χ v − q ) 2 � � ∆ E = ≤ vq − 2 m χ 2 m χ MeV incoming DM m χ = 100 GeV velocity v ~10 -3 nuclear recoil keV momentum transfer q energy transfer 𝛦 E Δ E eV meV eV keV MeV GeV q Zhengkang “Kevin” Zhang (UC Berkeley) 3 Fermilab/KICP, Jun. 2019

  4. Kinematic matching q 2 1 ( m χ v ) 2 − ( m χ v − q ) 2 � � ∆ E = ≤ vq − 2 m χ 2 m χ MeV m χ = 100 MeV nuclear recoil keV Δ E eV meV eV keV MeV GeV q Zhengkang “Kevin” Zhang (UC Berkeley) 4 Fermilab/KICP, Jun. 2019

  5. Kinematic matching q 2 1 ( m χ v ) 2 − ( m χ v − q ) 2 � � ∆ E = ≤ vq − 2 m χ 2 m χ MeV Band gap: O(eV). m χ = 100 MeV nuclear recoil keV electron excitations in semiconductors Δ E eV Essig, Mardon, Volansky, 1108.5383. Graham, Kaplan, Rajendran, Walters, 1203.2531. Lee, Lisanti, Mishra-Sharma, Safdi, 1508.07361. Essig, Fernandez-Serra, Mardon, Soto, Volansky, Yu, 1509.01598. Derenzo, Essig, Massari, Soto, Yu, 1607.01009. meV See talk by T. Yu. eV keV MeV GeV q Zhengkang “Kevin” Zhang (UC Berkeley) 5 Fermilab/KICP, Jun. 2019

  6. Kinematic matching q 2 1 ( m χ v ) 2 − ( m χ v − q ) 2 � � ∆ E = ≤ vq − 2 m χ 2 m χ MeV m χ = 100 keV nuclear recoil keV electron excitations in semiconductors Δ E eV meV eV keV MeV GeV q Zhengkang “Kevin” Zhang (UC Berkeley) 6 Fermilab/KICP, Jun. 2019

  7. Kinematic matching q 2 1 ( m χ v ) 2 − ( m χ v − q ) 2 � � ∆ E = ≤ vq − 2 m χ 2 m χ MeV Phonons/magnons in crystals m χ = 100 keV with energies up to O(100meV). 100 nuclear recoil 90 keV 80 electron excitations 70 in semiconductors 60 50 Δ E 40 30 20 10 eV collective excitations: Knapen, Lin, Pyle, Zurek, 1712.06598. phonons, magnons Griffin, Knapen, Lin, Zurek, 1807.10291. Trickle, ZZ, Zurek, 1905.13744. Griffin, Inzani, Trickle, ZZ, Zurek, to appear. See talks by T. Lin, S. Griffin. meV eV keV MeV GeV q Zhengkang “Kevin” Zhang (UC Berkeley) 7 Fermilab/KICP, Jun. 2019

  8. Phonons in crystals: a brief recap See talks by T. Lin, S. Griffin. Coupled quantum harmonic oscillators. ❖ Diagonalize the Hamiltonian => canonical modes — phonons (quanta ❖ of collective oscillation patterns). atom displacements phonon creation/annihilation operators phonon mode labels phonon polarization vectors Zhengkang “Kevin” Zhang (UC Berkeley) 8 Fermilab/KICP, Jun. 2019

  9. Phonons in crystals: a brief recap See talks by T. Lin, S. Griffin. Single phonon excitation from DM ❖ scattering (dark photon mediator case): phonon mode labels 1 1  eg χ X Q j e i q · x lj | 0 i M ν , k ( q ) = q 2 h ⌫ , k | N Ω ✏ ∞ l,j position operators create phonons Griffin, Knapen, Lin, Zurek, 1807.10291. Zhengkang “Kevin” Zhang (UC Berkeley) 9 Fermilab/KICP, Jun. 2019

  10. Roadmap Collective excitations as a path forward for light DM Kinematic matching in Phonons : detect spin-independent interactions DM direct detection Kinematics MeV m χ = 100 keV l i keV o electron excitations in c e r semiconductors r a e Δ E l c u n eV collective excitations: phonons, magnons meV eV keV MeV GeV q Zhengkang “Kevin” Zhang (UC Berkeley) 10 Fermilab/KICP, Jun. 2019

  11. Roadmap Collective excitations as a path forward for light DM Kinematic matching in Phonons : detect spin-independent interactions DM direct detection Kinematics Dynamics MeV m χ = 100 keV How does the DM couple to l i keV o electron excitations in c e r semiconductors r Standard Model particles? a e Δ E l c u n eV collective excitations: phonons, magnons meV eV keV MeV GeV q Zhengkang “Kevin” Zhang (UC Berkeley) 11 Fermilab/KICP, Jun. 2019

  12. DM coupling to electron spin In the Standard Model, the neutron is electrically neutral. Its leading ❖ interaction with the photon is via a magnetic dipole moment. Something similar can happen in the dark sector. The DM may be ❖ neutral under the dark photon, but interacts via a multipole moment. In these scenarios, DM couples to the electron spin at low energy: ❖ Such couplings can also arise in scalar mediator models. ❖ Zhengkang “Kevin” Zhang (UC Berkeley) 12 Fermilab/KICP, Jun. 2019

  13. Roadmap Phonons : detect spin-independent interactions Dynamics Magnons : detect spin-dependent interactions Zhengkang “Kevin” Zhang (UC Berkeley) 13 Fermilab/KICP, Jun. 2019

  14. Magnons: what they are and how they couple to DM Crystal lattice sites occupied by effective spins (from electrons of magnetic ions.) ❖ E xchange couplings between neighboring spins => ordered ground state . ❖ Excitations about such a ground state are magnons . ❖ Zhengkang “Kevin” Zhang (UC Berkeley) 14 Fermilab/KICP, Jun. 2019

  15. Magnons: what they are and how they couple to DM Technically, we need to expand the spins in terms of bosonic creation/annihilation ❖ operators via the Holstein-Primakoff transformation… where global coordinates local coordinates (ground state spin points in +z direction) … and then diagonalize the Hamiltonian via a Bogoliubov transformation… ❖ canonical magnon modes (quanta of collective precession patterns) Zhengkang “Kevin” Zhang (UC Berkeley) 15 Fermilab/KICP, Jun. 2019

  16. Magnons: what they are and how they couple to DM Technically, we need to expand the spins in terms of bosonic creation/annihilation ❖ operators via the Holstein-Primakoff transformation… where global coordinates local coordinates (ground state spin points in +z direction) … and then diagonalize the Hamiltonian via a Bogoliubov transformation… ❖ canonical magnon modes DM-spin coupling => DM-magnon coupling. ❖ (quanta of collective precession patterns) 1 M s i s f N Ω h s f | ˆ ˆ X lj e i q · x lj | 0 i ) ν , k ( q ) = O α χ ( q ) | s i ih ν , k | S α lj spin operators create magnons (cf. position operators create phonons) Zhengkang “Kevin” Zhang (UC Berkeley) 16 Fermilab/KICP, Jun. 2019

  17. Projected reach We consider a yttrium iron garnet (YIG, Y 3 Fe 5 O 12 ) target. ❖ 20 magnetic ions Fe 3+ (spin 5/2) in the unit cell => 20 magnon branches. ❖ Anti-ferromagnetic exchange couplings. Ground state: 12 up, 8 down. ❖ 100 90 80 70 60 50 40 30 20 10 Magnon dispersion calculated by including up to 3rd nearest neighbor exchange couplings taken from: Cherepanov, Kolokolov, L’vov, Physics Reports 229, 81 (1993). Zhengkang “Kevin” Zhang (UC Berkeley) 17 Fermilab/KICP, Jun. 2019

  18. Projected reach We consider a yttrium iron garnet (YIG, Y 3 Fe 5 O 12 ) target. ❖ Dark photon mediator (unconstrained by astro/cosmo): ❖ Magnetic dipole DM Anapole DM Ω χ Ω 10 - 33 10 - 31 10 - 32 10 - 34 10 - 33 10 - 35 10 - 34 10 - 36 10 - 35 π χ 10 - 37 g χ g e m χ / Λ χ = 10 - 8 10 meV 10 - 36 10 meV g χ 40 meV g e 10 - 38 10 - 37 m χ σ e [ cm 2 ] σ e [ cm 2 ] ] 2 / Λ χ 40 meV 2 = 10 - 5 ω 10 - 39 10 - 38 σ [ 10 - 9 10 - 39 10 - 40 ω min = 1 meV 1 10 - 40 0 - 6 10 - 41 ω min = 1 meV χ 10 - 10 10 - 41 1 0 - 7 10 - 42 10 - 42 10 - 43 10 - 43 10 - 44 10 - 44 10 - 45 10 - 45 10 - 2 10 - 1 1 10 10 - 2 10 - 1 1 10 m χ [ MeV ] m χ [ MeV ] χ Projection assumes 3 signal events/kg/yr. Zhengkang “Kevin” Zhang (UC Berkeley) 18 Fermilab/KICP, Jun. 2019

  19. Projected reach We consider a yttrium iron garnet (YIG, Y 3 Fe 5 O 12 ) target. ❖ Scalar mediator (impose white dwarf cooling constraint, ❖ consider SIDM subcomponent): Pseudo - mediated DM ( Ω χ / Ω DM = 0.05 ) 10 - 39 10 - 40 g χ = 4 π 4 10 - 41 0 χ m 1 0 χ Λ e m χ χ V e σ e [ cm 2 ] V χ Λ χ ω 10 - 42 m i n σ σ ω = 1 m g χ = 1 10 - 43 ω e V 10 - 44 10 - 45 10 10 - 2 10 - 1 1 10 m χ [ MeV ] χ χ Zhengkang “Kevin” Zhang (UC Berkeley) 19 Fermilab/KICP, Jun. 2019

  20. Summary Collective excitations in condensed matter systems offer promising detection ❖ paths for light DM due to kinematic matching . There is also a dynamics aspect of direct detection. Different excitations can ❖ be sensitive to different DM interactions. Previously phonons have been demonstrated to have capability of probing ❖ interesting DM scenarios with spin-independent interactions. We have shown that magnons (collective spin excitations) can be used to ❖ probe spin-dependent DM interactions, complementary to phonons. Next steps: ❖ Detection schemes. ❖ DM absorption. ❖ Other types of target responses? ❖ Zhengkang “Kevin” Zhang (UC Berkeley) 20 Fermilab/KICP, Jun. 2019

  21. The End Thank you for your attention! 21

  22. Back-up slides 22

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend