slides from 2012 in videos assigned for lectures on 8 and
play

Slides from 2012 in videos assigned for lectures on 8 and 10 - PowerPoint PPT Presentation

Slides from 2012 in videos assigned for lectures on 8 and 10 November 2012-Lecture 10 starting from 0:33 until the end, all of lecture 11 and lecture 12 from start to 1:02. tot SAME SUBSHELL COUPLING + TOTAL L,S MONOPOLE (N-1)e -


  1. Slides from 2012 in videos assigned for lectures on 8 and 10 November 2012-Lecture 10 starting from 0:33 until the end, all of lecture 11 and lecture 12 from start to 1:02.

  2. tot SAME SUBSHELL COUPLING + TOTAL L,S  ”MONOPOLE” (N-1)e - SHAKE-UP/ SHAKE-OFF  "Basic Concepts of XPS" 1e- DIPOLE  d  /d  ”MONOPOLE” 2 Chapter 3

  3. tot SAME SUBSHELL COUPLING + TOTAL L,S  ”MONOPOLE” (N-1)e - SHAKE-UP/ SHAKE-OFF  "Basic Concepts of XPS" 1e- DIPOLE  d  /d  ”MONOPOLE” 3 Chapter 3

  4. tot SAME SUBSHELL COUPLING + TOTAL L,S  ”MONOPOLE” (N-1)e - SHAKE-UP/ SHAKE-OFF  "Basic Concepts of XPS" 1e- DIPOLE  d  /d  ”MONOPOLE” 4 Chapter 3

  5. tot SAME SUBSHELL COUPLING + TOTAL L,S  ”MONOPOLE” (N-1)e - SHAKE-UP/ SHAKE-OFF  "Basic Concepts of XPS" 1e- DIPOLE  d  /d  ”MONOPOLE” 5 Section 3.D.

  6. tot SAME SUBSHELL COUPLING + TOTAL L,S  ”MONOPOLE” (N-1)e - SHAKE-UP/ "Basic Concepts of XPS" SHAKE-OFF  1e- DIPOLE  d  /d  Section 3.D. ”MONOPOLE” 6 Section 6.D.

  7. (a) (b) CO ref. intens. C1s I 0  |  0 | 2 500 eV  j = object wave  0 = reference wave K f  inc  e v 0 (c) k f Photo toele electr ctron n Dif iffrac fraction ion

  8. X-ray ay Photoe oelect ectron ron Di Diffr fract action: n:1ML 1ML FeO on Pt(1 (111) 11) (a) (b) Forward d Scat atter tering ng    0.65 5 Å

  9. PLUS SPIN:  (  )= )= m si si = +½ =   (  )= )= m si si = -½ =   (  )  (  )  (  )  (  )  m s = = m sf sf - m si si = 0 ! 9

  10. The quantum mechanics of covalent bonding in molecules: H 2 + with one electron  - =  antibonding   1sa -  1sb  + =  bonding   1sa +  1sb  antibonding Total Energy =R 10

  11. H b H a Anti-Bonding  anti MO   1sa -  1sa  positive (unoc occupi upied) ed)  a.u. u. = +7.21 1 eV  negat ative (occupied) upied) Bonding  bonding MO   1sa +  1sa  a.u. u. = -16. 6.16 16 eV (Com ompar pare e – 13. 3.61 61 for r H atom om 1s) 11

  12. The LCAO or tight-binding picture for CO: NON/WEAKLY CORE: Chemist’s picture ( no core): x    X 36 C O x    x 12

  13. THE ELECTRONS IN HF (OR HCl): ionic molecules 1  2 HF: F1s 2 2  2 3  2 1  x 2 1  y 2 1 e - 9 e - F F 1s core H 13 1  E = -25.6 a.u.

  14. PLUS SPIN: PLUS SPIN:  (  )=  (  )= )= m si )= m si si = +½ =  si = +½ =   (  )=  (  )= )= m si )= m si si = -½ =  si = -½ =     ˆ ˆ ˆ  (  )  (  )  (  )  (  )  (  )  (  )  (  )  (  )     ^ ^ ^ ^  m s =  m s = = = m sf m sf sf - m si sf - m si si si = 0 ! = 0 !  ˆ   ^ ^ "Basic Concepts of XPS" 14 Chapter 3

  15. The free-electron solid at absolute zero 2 k 2 Å -1   2 E(k ) 3.81(k(in )) (in eV ) 2m e = the density of states 15

  16. NEARL NEARLY-FREE E FREE ELECTR LECTRONS ONS IN IN A A WEAK PE WEAK PERIODIC RIODIC PO POTE TENTI NTIAL AL — 1 1 DIM. DIM.

  17. L 17

  18. Electronic bands and density of states for “free - electron” metals - Rydberg = 13.605 eV Aluminum — fcc, a a = 4.05 Å 1s 2 2s 2 2p 6 3s 2 3p 1 Lithium — bcc, a = 3.49 Å 1s 2 2s 1 a 2 (k ) 2 0 E(k )  x 0 x 2m =1.55Å -1 2 (k ) 2 2  /a k x E(k )  x x 2m =1.8Å -1 2  /a 18

  19. Electronic bands and density of states for a semiconductor-Germanium — 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 2 Anti- Bonding Vacuum (empty at Level Work T = 0) Function,  = 4.8 eV E F Inner Potential, V 0  4.8+0.3+12.6 Bonding = 17.7 eV (filled at T = 0) 19

  20. Vacuum level The electr tron onic ic str tructure cture of a transiti nsition on meta tal — fcc cc Cu  Cu = 4.4 eV = work function V 0,Cu =13.0eV Experime rimenta ntal points ts from m - 8.6 eV angle-reso resolved ved photoelectron ctron spectro ctroscop scopy (more re later) r) 20

  21. Atomic orbital makeup Atomic orbital makeup Atomic orbital makeup Solid state tight-binding approach       MO MO ( ) ( ) r r c c   AO AO ( ) ( ) r r j j Ai j Ai j , , Ai Ai Atoms A Atoms A Crystal potential-1D Orbitals i Orbitals i Molecular R j orbital 5  5  5  5  approach Atomic orbitals  j+1  j  j-1 1  y 1  y 1  y 1  y 1  x 1  x 1  x 1  x Tight-binding wave function + + + + – – – – Anti- Bonding 4  4  4  4  + + + + E j ++ ++ ++ ++ – – – – 3  3  3  3  BF φ (r ) = a Bloch function k Bonding 1   ik R  AO  e c  φ (r R ) j Ai j Ai,k 1/ 2 N 21 Ai= basis set of AOs j = 1.....N unit cells at R j in unit cell

  22. Ligand Ligand (e.g. O) (e.g. O) And the same e thing g for the d or orbita itals: s: e e g g Transition Transition Metal (e.g. Mn) Metal (e.g. Mn) e g and t 2g not e g and t 2g not equivalent in equivalent in z z octahedral (cubic) octahedral (cubic) environment environment y y z 2 2 2 2 x x - - y y 2 2 2 2 3z 3z - - r r t t x x 2g 2g zx y xy x yz Face-centered cubic — yz yz zx zx xy xy 12 nearest neighbors 22

  23. Copper densities of states-total and by orbital type: ~Bonding ~Anti-Bonding More localized 3d-like Delocalized free electron-like 23

  24. 3s 2 3p 6 filled + 3d,4s CB 3d 2 4s 2 3d 3 4s 2 3d 5 4s 1 3d 6 4s 2 The ele lectr tron onic ic struc ructur tures es of the 3d 3d tran ansiti sition on meta tals ls — + Ex + Exchange! + Excha + hang nge! e!  “rigid -band and model” + Flat “core - like” Ar 3s, 3p bands at  -1.0- 1.5 Rydbergs 3d 7 4s 2 3d 8 4s 2 3d 10 4s 1 3d 10 4s 2 + + Ex Exchange! + + Ex Exchange! + Flat “core - like” Zn 3d bands at  -0.8 Rydberg 24

  25. The electronic bands and densities of states of ferromagnetic iron Exchange  S = 2.2 Bohr splitting magnetons (Atomic iron: Spin-down (Minority) 2.0 Bohr Spin-up (Majority) magnetons) 4 x ½ = 2 25 k = 0 k = 0

  26. Vacuum level  Fe = 4.3 eV V 0,Fe =12.4 eV  E exch -8.1 eV 26 Hathaway et al., Phys. Rev. B 31, 7603 (’85)

  27. Fe: AN e: ANGLE AND GLE AND SPIN SPIN-RESOL RESOLVED VED SP SPECT ECTRA A RA AT T  PO POIN INT 27

  28. Ligand Ligand (e.g. O) (e.g. O) And the same e thing g for the d or orbita itals: s: yz plane e e g g + Transition Transition - Metal (e.g. Mn) Metal (e.g. Mn) + e g and t 2g not e g and t 2g not + - - equivalent in equivalent in z z octahedral (cubic) octahedral (cubic) + environment environment y y z 2 2 2 2 x x - - y y 2 2 2 2 3z 3z - - r r t t x x 2g 2g zx + - - y + - + xy + - + x - - + yz Face-centered cubic — xy yz yz zx zx xy 12 nearest neighbors 28

  29. E.g. — Crystal field in Mn 3+ & Mn 2+ with negative octahedral ligands Group theoretical High-spin* /Low-spin* symmetry Mn 2+ 3d 5 Mn 3+ 3d 4 B 1  bonding - Bonding- O2p z Delocalized + A 1 + - J H > 0 10 Dq Exchange Xstal fld. + B 2 - Non/Weakly-Bonding- Localized  bonding O2p z E - - + z + + + - - y x Jahn- yz plane Teller High-spin*: 10Dq << J H Low-spin*: 10Dq >> J H 29

  30. SrTiO 3 and La 0.67 Sr 0.33 MnO 3 band structures and DOS La 0.67 Sr 0.33 MnO 3 - Half-Metallic SrTiO 3 -band insulator Ferromagnet Projected DOSs Spin-up Spin-down d xz +d yz d xy d z2 No spin Mn e g d x2-y2 Expt’l . bandgap down! d xz +d yz Expt’l . band 3.3 eV offset 3.0 eV Mn t 2g d xy O 2p Spin-up Plucinski, TBP Zheng, Binggeli, J. Phys. Spin-down with expt’l . band offset Cond. Matt. 21, 115602 (2009) Chikamatsu et al., Plucinski, TBP PRB 73, 195105 (2006); Plucinski, TBP

  31. Mn 3d FM : T << T C Half-Metallic Ferromagnetism   O 2p  t 2g e g LDA theory - FM La 0.75 Ca 0.25 MnO 3  O 2p  E gap  t 2g t 2g J H t 2g  PM : T > T C E F   O 2p      O 2p  J H O 2p Mn 3d T > T C T << T C La 4f  E gap  Energy (eV) Pickett and Singh, PRB 53, 1146 (1996) Experiment- spin-resolved PS La 0.70 Sr 0.30 MnO 3 as thin film Park et al., Nature, PRB 392, 794 (1998)

  32. SURF SURFACE E CE ELE LECTR CTRON ONIC ST IC STATE TES (  d character, localized) (  s,p character, delocalized) 33

  33. Su Surface face states ates on Cu Cu(111) 1) Shockley surface State: s,p makeup Tamm surface state: 3d makeup 34

  34.  K k Vary  to scan f ,|| f ,||  “The UPS Limit” 35

  35. 36

  36. The Nobel Prize in Physics 2010 Andre Geim, Konstantin Novoselov …"for groundbreaking experiments regarding the two-dimensional material graphene" Photoelectron spectroscopy Bostwick et al., Nature Physics 3, 36 - 40 (2007)

  37. The Soft X-Ray Spectroscopies Electron-out: surface sensitive Core PE e - Valence PE e - h  CB E F VB h  Core PE = photoemission = photoelectron spectroscopy XAS = x-ray absorption spectroscopy AES = Auger electron spectroscopy XES = x-ray emission spectroscopy 38 REXS/RIXS = resonant elastic/inelastic x-ray scattering

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend