singlet contributions to the vector correlator
play

Singlet Contributions to the Vector Correlator Computational - PowerPoint PPT Presentation

Singlet Contributions to the Vector Correlator Computational Theoretical Particle Physics B AC KA SFB TR9 Johann H. K uhn in collaboration with P. Baikov, K. Chetyrkin, and J. Rittinger based on P. Baikov, K. Chetyrkin, and J. K.,


  1. Singlet Contributions to the Vector Correlator Computational Theoretical Particle Physics B AC KA SFB TR9 Johann H. K¨ uhn in collaboration with P. Baikov, K. Chetyrkin, and J. Rittinger based on P. Baikov, K. Chetyrkin, and J. K., Nucl.Phys.Proc.Suppl.205-206:237-241,2010; P. Baikov, K. Chetyrkin, J. K. and J. Rittinger, in preparation

  2. Outline • status of vector (VV) correlator in massless QCD: singlet versus nonsinglet • tool-box • singlet contribution O ( α s 4 ) for a generic gauge group • QED β -function in five loops • phenomenological implications for σ tot ( e + e − → hadrons ) • Gross-Llewellyn Smith sum rule in O ( α s 4 ) and test of the constraints on the singlet part of the Adler function coming from the Crewther relation • Conclusions

  3. “gold plated” (Bjorken, 1979) QCD observables: R Z = Γ( Z 0 → hadrons ) /σ ( Z 0 → µ + µ − ) R τ = Γ( τ → hadrons + ν τ ) / Γ( τ → l + ¯ ν l + ν τ ) R ( s ) = σ tot ( e + e − → hadrons ) /σ ( e + e − → µ + µ − ) 2 (via unitarity) R ( s ) ≈ ℑ Π( s − iδ ) = � Π( Q 2 ) ≈ e iqx � 0 | T [ j v µ ( x ) j v µ (0) ] | 0 � dx = Adler function ≡ Q 2 d � R ( s ) d Q 2 Π( q 2 ) = Q 2 R ( s ) ↔ D ( Q ) ⇐ ( s + Q 2 ) 2 ds ( a s ≡ α s /π, µ = Q, Q 2 ≡ − q 2 ) � � r i a s ( s ) i , d i a s ( Q ) i , R ( s ) = 1 + D = 1 + i ≥ 1 i ≥ 1

  4. • status of theory (in the massless limit) • i ( 1 + α s � α s � 2 � α s � 3 � α s � 4 R NS = 3 � Q 2 π + # + # + # + · · · ) π π π i parton QED Chetyrkin, Kataev, Gorishny, Kataev, Larin; Baikov, Chetyrkin, K¨ uhn model K¨ allen+ Surguladze, Samuel 1991 Tkachov; Dine, 2008; Baikov, Chetyrkin, Sabry Sapirstein; Celmaster Chetyrkin /gen. gauge/ K¨ uhn 2010 (Feynman Gauge 1955 1979 1996 only) � α s � 3 � 4 + · · · ) R SI = ( � Q i ) 2 ( � α s # + ?? π π i D N S D SI

  5. Recall non-singlet results (PLR 101 (2008) 012002): R NS = 1 + a s + (1 . 9857 − 0 . 1152 n f ) a 2 s ( − 6 . 63694 − 1 . 20013 n f − 0 . 00518 n 2 f ) a 3 s +( − 156 . 61 + 18 . 77 n f − 0 . 7974 n 2 f + 0 . 0215 n 3 f ) a 4 s Impact on α s from Z − decays: α s ( M Z ) NNLO = 0 . 1185 ± 0 . 0026 exp ± 0 . 002 th O ( α 3 s ) : Including the α 4 s term leads to an increase of δα s ( M Z ) = 0 . 0005 and to four-fold decrease of the theory error! α s ( M Z ) NNNLO = 0 . 1190 ± 0 . 0026 exp ± 0 . 0005 th O ( α 4 s ) : Impact on α s from τ -decays (FO and CI): α s decreased by δα s ( M Z ) = 0 . 0016 δα s ( M Z ) NNNLO = 0 . 1202 ± 0 . 0019 exp

  6. Massless Correlators: Technicalities Π related to the corresponding absorptive part R ( s ) through R jj ( s ) ≈ ℑ Π jj ( s − iδ ) RG equation Π jj = Z jj + Π B are ( − Q 2 , α B are ) s � � µ 2 ∂ ∂µ 2 + β ( a s ) ∂ Π = γ jj ( a s ) ∂a s extremely useful for determining the absorptive part of Π jj

  7. For Π at 5 loop ∂ β ( a s ) ∂ � � ∂ log( µ 2 )Π = γ jj ( a s ) − Π ∂a s ր տ 4-loop integrals at O ( α 3 s ) only anom.dim. at O ( α 4 contribute s ) due to the factor of 5 loop integrals β ( a s ) ∂ ∂a s = O ( a s ) • to find Log-dependent part of Π at 5-loops one needs 5-loop anomalous dimension γ jj and 4-loop Π (BUT! including its constant part) • 5-loop anom.dim. reducible to 4-loop p-integrals

  8. Tool-box for massless correlators at α 4 s : • IRR / Vladimirov, (78)/ + IR R ∗ -operation /Chetyrkin, Smirnov (1984)/ + resolved combinatorics /Chetyrkin, (1997)/ • reduction to Masters: “direct and automatic” construction of CF’s through 1 /D expansion within the Baikov’s representation for Feynman integrals ( Phys. Lett. B385 (1996) 403; B474 (2000) 385; Nucl.Phys.Proc.Suppl.116:378-381,2003 ) • computing: MPI-based (PARFORM) as well as thread-based (TFORM) versions of FORM Vermaseren, Retey, Fliegner, Tentyukov, ...(2000 – . . . )

  9. Results Singlet contribution to the Adler function (Last missing term!) � ∞ � � D SI ( Q 2 ) = d R d SI a i s ( Q 2 ) i i =3 � 11 = d abc d abc = d abc d abc 192 − 1 � d SI , d SI C F d SI 4 , 1 + C A d SI 4 , 2 + T n f d SI � � 8 ζ 3 3 4 4 , 3 d R d R 4 , 1 = = − 13 64 − ζ 3 4 + 5 ζ 5 4 , 3 = − 149 576 − 13 32 ζ 3 + 5 16 ζ 5 + 1 8 ζ 2 d SI d SI 8 , 3 − 3893 4608 + 169 128 ζ 3 − 45 64 ζ 5 − 11 32 ζ 2 d SI = 4 , 2 3

  10. Phenomenological implications for σ tot ( e + e − → hadrons ) Numerically: � Q 2 1 + a s + a 2 � R ( s ) = 3 s (1 . 986 − 0 . 1153 n f ) f f a 3 − 6 . 637 − 1 . 200 n f − 0 . 00518 n 2 � �� + s f 2 �   � � 1 . 2395 a 3 s + ( − 17 . 8277 + 0 . 57489 n f ) a 4 − Q f  s f for n f =5 11 +1 1 + a s + a 2 s 1 . 409 − 12 . 767 a 3 s − 79 . 98 a 4 − 1 . 240 a 3 s − 14 . 95 a 4 � � � � s s 3 9 Extra suppression factor 3 99 ≈ 0 . 03 !

  11. QED β -function in five loops By a proper change of color factors we arrive at the full Adler function of QED in five loops = ⇒ the QED β -function; e 2 for a QED with one charged fermion we get ( A ≡ 16 π 2 ) Gorishny, Kataev, β QED = 4 3 A +4 A 2 − 62 � 5570 243 + 832 � 9 A 3 − A 4 9 ζ 3 Larin, Surguladze, 1991 − A 5 � 195067 + 800 3 ζ 3 + 416 3 ζ 4 − 6880 � 3 ζ 5 486 Numerically ( A = α 4 π ≈ 5 . 81 · 10 − 4 ) β QED = 4 1 + 3 A − 5 . 1667 A 3 − 100 . 534 A 4 + 1129 . 51 A 5 � � 3 A

  12. To check reduction to masters, two more calculations in O ( α s 4 ) , all for general gauge group! : 1. Perturbative factor C Bjp ( a s ) in Bjorken sum rule: � 1 1 ( x, Q 2 )] dx = 1 6 | g A [ g ep 1 ( x, Q 2 ) − g en | C Bjp ( a s ) g V 0 2. Perturbative factor C GLS ( a s ) in Gross-Llewellyn Smith sum rule: � 1 1 F νp + νp ( x, Q 2 ) dx = 3 C GLS ( a s ) 3 2 0 Both sum rules are unambiguous QCD predictions /modulo higher twists!/ confrontable with data

  13. Typical diagrams at α s 3 (computed in early nineties /Larin & Vermaseren/), Bjp and GLS GLS only (1) (non-singlet) (singlet) q q + 5 + 3 4 6 a s + a 2 C NS GLS ≡ C BJp = 1 − s [ − 4 . 583 + 0 . 3333 n f ] a 3 − 41 . 44 + 7 . 607 n f − 0 . 1775 n 2 � � + s f a 4 − 479 . 4 + 123 . 4 n f − 7 . 697 n 2 f + 0 . 1037 n 3 � � + s f GLS = 0 . 4132 n f a 3 s + a 4 C SI s n f (5 . 80157 − 0 . 233185 n f ) Note: C SI GLS ≪ C NS GLS as expected (MS-scheme):

  14. (Generalized) Crewther relation for D NS C Bjp ( a s ) D NS ( a s ) = 1 + β ( a s ) � K NS = K 1 a s + K 2 a 2 � s + K 3 a 3 s + . . . ( ⋆ ) a s T f n f with β ( α s ) β 0 = 11 ≡ − β 0 a s + . . . , 12 C A − 3 α s ( ⋆ ) implies 6 constraints on 12 color structures C 4 F , C 3 F C A , C 2 F C 2 A , C F C 3 A , C 3 F T F n f , C 2 F C A T F n f , C F C 2 A T F n f , C 2 F T 2 F n 2 f , C F C A T 2 F n 2 f , C F T 3 F n 3 f , d abcd d abcd , n f d abcd d abcd F A F F appearing at O ( α 4 s ) in the difference D NS − 1 /C Bjp All 6 constraints are met identically! (which means 6 · 7 = 42 separate constraints on coefficients of ζ 3 , ζ 2 3 , . . .

  15. Crewther relation between D = D NS + D SI and C GLS D NS + d SI 3 a 3 4 a 4 3 a 3 4 a 4 s + d SI C NS GLS + c SI s + c SI � � � � = s s d abc d abc 1 + β ( α s ) � K NS + a 3 � s K SI 3 n f ⋆ α s d R T f with β ( α s ) β 0 = 11 ≡ − β 0 a s + . . . , 12 C A − 3 α s = n f d abc d abc = n f d abc d abc d SI d SI d SI � C F d SI 4 , 1 + C A d SI 4 , 2 + T F d SI � 3 , 1 , 3 4 4 , 3 d R d R = n f d abc d abc = n f d abc d abc c SI c SI c SI � C F c SI 4 , 1 + C A c SI 4 , 2 + T F c SI � 3 , 1 , 3 4 4 , 3 d R d R rhs of ⋆ depends on only 1 unknown parameter, K SI 3 , thus 3-1 =2 constraints on three coefficients in d SI 4

  16. Obvious solution of these constraints reads: 4 , 1 = − 3 4 , 1 = − 13 64 − ζ 3 4 + 5 ζ 5 d SI 2 c SI 3 , 1 − c SI 8 4 , 2 + 11 4 , 3 + 1 d SI 4 , 2 = − c SI 12 K SI d SI 4 , 3 = − c SI 3 K SI 3 , 1 3 , 1 All 2 constraints are met identically! (which means 2*7=14 separate constraints on coefficients of front of ζ 3 , ζ 2 3 , ζ 4 , ζ 4 ζ 3 , ζ 5 , ζ 7 , n m )

  17. CONCLUSIONS • Singlet and non-singlet parts of the Adler function and the perturbative factors C ( a s ) of Bjorken and GLS sum rule have been both analytically evaluated for generic gauge group at O ( α s 4 ) • The generalized Crewther relation puts 42 constraints on the non- singlet result and 14 constraints on the difference d SI 4 − C CLS which 4 are all fulfilled! • Numerically, the singlet contribution to the VV-correlator is tiny

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend