action of finite groups on generalized cluster categories
play

Action of finite groups on (generalized) cluster categories Laurent - PowerPoint PPT Presentation

Action of finite groups on (generalized) cluster categories Laurent Demonet Max Planck Institut f ur Mathematik - Germany 1 / 19 triangulated or exact 2-Calabi-Yau category categorification cluster characters (MRZ, BMRRT, (CC,


  1. Action of finite groups on (generalized) cluster categories Laurent Demonet Max Planck Institut f¨ ur Mathematik - Germany 1 / 19

  2. � � triangulated or exact 2-Calabi-Yau category categorification cluster characters (MRZ, BMRRT, (CC, CK, GLS, P, GLS, . . . ) FK, . . . ) Skew-symmetric cluster algebra 2 / 19

  3. � � � � 2-Calabi-Yau category triangulated or exact with an action 2-Calabi-Yau category of a finite group categorification cluster characters (MRZ, BMRRT, (CC, CK, GLS, P, categorification cluster character GLS, . . . ) FK, . . . ) Skew-symmetric Skew-symmetrizable cluster algebra cluster algebra 2 / 19

  4. � �� �� � �� � �� � � � � � � � � � � � � � � � � � � � � � ��� ������������������ � ������������������ � � ������ �� �� � � � �� � � � � � � � � � � � � ������ �� � � � � � � � ��� � � � � � � � � ���� � �� � � �� � � � � � � ���� �� � � � � � � � �� � � � � � � � � � � � � � � �� � � �� � � �� � � �� � � � � � � � �� � � � � � � �� � � � � � �� � �� � � � � � ��� � � � �� � � � �� � ��������� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��� � � � � � � �� � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � �� � � � � � � � � � � � � 3 / 19

  5. � �� �� � �� � �� � � � � � � � � � � � � � � � � � � � � � ��� ������������������ � ������������������ � � ������ �� �� � � � �� � � � � � � � � � � � � ������ �� � � � � � � � ��������������� ��� � � � � � � � � � � � ���� �� � � � �� � � � � � � ���� �� � � � � � � � �� � � � � � � � � � � � � � � �� � � �� � � �� � � �� � � � � � � � �� � � � � � � �� � � � � � �� � �� � � � � � ��� � � � �� � � � �� � ��������� � � � � � � � � ��������������� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��� � � � � � � �� � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � �� � � � � � � � � � � � � 3 / 19

  6. Equivariant category Let k be an algebraically closed field and C a k -category. Let G be a finite group such that char k does not divide # G . 4 / 19

  7. Equivariant category Let k be an algebraically closed field and C a k -category. Let G be a finite group such that char k does not divide # G . Definition (category G = mod Fun( G )) simple objects : { g | g ∈ G } ; morphisms : Hom G ( g , h ) = k δ gh ; tensor product : g ⊗ h = gh . 4 / 19

  8. Equivariant category Let k be an algebraically closed field and C a k -category. Let G be a finite group such that char k does not divide # G . Definition (category G = mod Fun( G )) simple objects : { g | g ∈ G } ; morphisms : Hom G ( g , h ) = k δ gh ; tensor product : g ⊗ h = gh . Definition (action of G over C ) Structure of G -module category on C . 4 / 19

  9. Equivariant category Definition (Equivariant object ( X , ψ )) X ∈ C ; ( ψ g ) g ∈ G with ψ g : g ⊗ X − → X . 5 / 19

  10. � � Equivariant category Definition (Equivariant object ( X , ψ )) X ∈ C ; ( ψ g ) g ∈ G with ψ g : g ⊗ X − → X . Id g ⊗ ψ h � g ⊗ X g ⊗ ( h ⊗ X ) α ψ g ψ gh � X gh ⊗ X 5 / 19

  11. � � � � Equivariant category Definition (Equivariant object ( X , ψ )) X ∈ C ; ( ψ g ) g ∈ G with ψ g : g ⊗ X − → X . Id g ⊗ ψ h � g ⊗ X g ⊗ ( h ⊗ X ) α ψ g ψ gh � X gh ⊗ X Definition (morphism f from ( X , ψ ) to ( Y , χ )) ψ g � X g ⊗ X Id g ⊗ f f χ g � Y g ⊗ Y 5 / 19

  12. Equivariant category Proposition C G is a mod k [ G ] -module category. 6 / 19

  13. Equivariant category Proposition C G is a mod k [ G ] -module category. Example If C is the category of k -vector spaces, then C G ≃ mod k [ G ]. 6 / 19

  14. Equivariant category Proposition C G is a mod k [ G ] -module category. Example If C is the category of k -vector spaces, then C G ≃ mod k [ G ]. Q = 1 ← 2 → 1 ′ G = Z / 2 Z 6 / 19

  15. � � � Equivariant category Proposition C G is a mod k [ G ] -module category. Example If C is the category of k -vector spaces, then C G ≃ mod k [ G ]. Q = 1 ← 2 → 1 ′ G = Z / 2 Z ( X , ψ ) ∈ (mod kQ ) G indecomposable : 1 ⊕ 1 ′ 2 , Id 2 , − Id ⊕ 2 2 � � � � � 1 1 ′ 2 2 � � 1 ′ , ψ ′ � � 1 ′ , ψ � � � � � � 1 1 6 / 19

  16. Case of exact categories Suppose that: Q is a dynkin quiver; Λ is the preprojective algebra of Q ; C = mod Λ; G acts on Q . 7 / 19

  17. Case of exact categories Suppose that: Q is a dynkin quiver; Λ is the preprojective algebra of Q ; C = mod Λ; G acts on Q . Then: C is exact, Hom-finite, Krull-Schmidt; C is stably 2-Calabi-Yau (Ext 1 C ( X , Y ) ≃ Ext 1 C ( Y , X ) ∗ ); C G has the same properties. 7 / 19

  18. Case of exact categories Suppose that: Q is a dynkin quiver; Λ is the preprojective algebra of Q ; C = mod Λ; G acts on Q . Then: C is exact, Hom-finite, Krull-Schmidt; C is stably 2-Calabi-Yau (Ext 1 C ( X , Y ) ≃ Ext 1 C ( Y , X ) ∗ ); C G has the same properties. (can be generalized to other exact categories) 7 / 19

  19. Equivariant category Notation Add ( C ) = {T ⊂ C additive, full, stable under isomorphisms and direct summand } 8 / 19

  20. Equivariant category Notation Add ( C ) = {T ⊂ C additive, full, stable under isomorphisms and direct summand } Proposition {T ∈ Add ( C ) G-stable } F ← →{T ∈ Add ( C G ) mod k [ G ] -stable } Notation (forgetful functor) F : C G → C ( X , ψ ) �→ X 8 / 19

  21. Stable cluster-tilting subcategories Definition (stable cluster-tilting subcategory) T ∈ Add ( C ) (resp. ∈ Add ( C G )) is G -stable (resp. mod k [ G ]-stable) cluster-tilting if 9 / 19

  22. Stable cluster-tilting subcategories Definition (stable cluster-tilting subcategory) T ∈ Add ( C ) (resp. ∈ Add ( C G )) is G -stable (resp. mod k [ G ]-stable) cluster-tilting if ∀ X ∈ C , X ∈ T ⇔ ∀ Y ∈ T , Ext 1 C (resp. C G ) ( X , Y ) = 0; 9 / 19

  23. Stable cluster-tilting subcategories Definition (stable cluster-tilting subcategory) T ∈ Add ( C ) (resp. ∈ Add ( C G )) is G -stable (resp. mod k [ G ]-stable) cluster-tilting if ∀ X ∈ C , X ∈ T ⇔ ∀ Y ∈ T , Ext 1 C (resp. C G ) ( X , Y ) = 0; G ⊗ T = T (resp. mod k [ G ] ⊗ T = T ). 9 / 19

  24. Stable cluster-tilting subcategories Definition (stable cluster-tilting subcategory) T ∈ Add ( C ) (resp. ∈ Add ( C G )) is G -stable (resp. mod k [ G ]-stable) cluster-tilting if ∀ X ∈ C , X ∈ T ⇔ ∀ Y ∈ T , Ext 1 C (resp. C G ) ( X , Y ) = 0; G ⊗ T = T (resp. mod k [ G ] ⊗ T = T ). Proposition {T ∈ Add ( C ) G-stable cluster-tilting } F ← →{T ∈ Add ( C G ) mod k [ G ] -stable cluster-tilting } 9 / 19

  25. Stable cluster-tilting subcategories Definition ( G -loop and G -2-cycle) If T ∈ Add ( C ) G , G -loop : X → g ⊗ X irreducible (in T ) ; 10 / 19

  26. Stable cluster-tilting subcategories Definition ( G -loop and G -2-cycle) If T ∈ Add ( C ) G , G -loop : X → g ⊗ X irreducible (in T ) ; G -2-cycle : X → Y → g ⊗ X irreducible. 10 / 19

  27. Stable cluster-tilting subcategories Definition ( G -loop and G -2-cycle) If T ∈ Add ( C ) G , G -loop : X → g ⊗ X irreducible (in T ) ; G -2-cycle : X → Y → g ⊗ X irreducible. (same definitions in C G ) 10 / 19

  28. Stable cluster-tilting subcategories Definition ( G -loop and G -2-cycle) If T ∈ Add ( C ) G , G -loop : X → g ⊗ X irreducible (in T ) ; G -2-cycle : X → Y → g ⊗ X irreducible. (same definitions in C G ) Lemma T ∈ Add ( C G ) mod k [ G ] has no mod k [ G ] -loop ⇔ F T has no G-loop. T ∈ Add ( C G ) mod k [ G ] has no mod k [ G ] - 2 -cycle ⇔ F T has no G- 2 -cycle. 10 / 19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend