dimer models and cluster categories of grassmannians
play

Dimer models and cluster categories of Grassmannians Karin Baur - PowerPoint PPT Presentation

Dimer models and cluster categories of Grassmannians Karin Baur University of Graz Rome, October 18, 2016 1 / 17 Motivation Cluster algebra structure of Grassmannians Construction of cluster categories ( k , n ) - diagrams Definition


  1. Dimer models and cluster categories of Grassmannians Karin Baur University of Graz Rome, October 18, 2016 1 / 17

  2. Motivation Cluster algebra structure of Grassmannians Construction of cluster categories ( k , n ) - diagrams Definition Example Dimer models and dimer algebras Dimer models Dimer algebras Module category with Grassmannian structure An algebra of preprojective type Properties of F F � dimer algebra Back to the dimer algebra 2 / 17

  3. Coordinate ring of Grassmannian Gr k , n = { k -spaces in C n } ∋ pt �→ ( v 1 , . . . , v n ) with v i ∈ C k . full rank k × n -matrix /GL k . 3 / 17

  4. Coordinate ring of Grassmannian Gr k , n = { k -spaces in C n } ∋ pt �→ ( v 1 , . . . , v n ) with v i ∈ C k . full rank k × n -matrix /GL k . For I = { 1 ≤ i 1 < i 2 < · · · < i k ≤ n } : ∆ I := det( v i 1 , v i 2 , . . . , v i k ) ucker coordinate (up to C ∗ -multiplication). The I -th Pl¨ 3 / 17

  5. Coordinate ring of Grassmannian Gr k , n = { k -spaces in C n } ∋ pt �→ ( v 1 , . . . , v n ) with v i ∈ C k . full rank k × n -matrix /GL k . For I = { 1 ≤ i 1 < i 2 < · · · < i k ≤ n } : ∆ I := det( v i 1 , v i 2 , . . . , v i k ) ucker coordinate (up to C ∗ -multiplication). The I -th Pl¨ ucker coordinates generate C [ � The Pl¨ Gr k , n ] (in deg 1). They satisfy the Pl¨ ucker relations (deg 2 relations). 3 / 17

  6. Cluster algebra structure of C [ � Gr k , n ] Theorem (Fomin-Zelevinsky, Scott) D a ( k , n )-diagram. X ( D ) := { ∆ I ( R ) | R alternating region of D } . ⇒ every element of C [ � = Gr k , n ] is a Laurent polynomial in X ( D ). 4 / 17

  7. Cluster algebra structure of C [ � Gr k , n ] Theorem (Fomin-Zelevinsky, Scott) D a ( k , n )-diagram. X ( D ) := { ∆ I ( R ) | R alternating region of D } . ⇒ every element of C [ � = Gr k , n ] is a Laurent polynomial in X ( D ). � X ( D ) is a cluster, C [ � Gr k , n ] a cluster algebra. Exchange relations: Pl¨ ucker relations 4 / 17

  8. Cluster algebra structure of C [ � Gr k , n ] Theorem (Fomin-Zelevinsky, Scott) D a ( k , n )-diagram. X ( D ) := { ∆ I ( R ) | R alternating region of D } . ⇒ every element of C [ � = Gr k , n ] is a Laurent polynomial in X ( D ). � X ( D ) is a cluster, C [ � Gr k , n ] a cluster algebra. Exchange relations: Pl¨ ucker relations Proofs Fomin-Zelevinsky k = 2 (triangulations!). Scott: arbitrary k (alternating strand diagrams). 4 / 17

  9. Construction of cluster categories Cluster categories (type A n ) Let Q be a quiver of Dynkin type A n . C Q path algebra of Q 1 2 3 α β { e 1 , e 2 , e 3 , α, β, β ◦ α } C Q -mod: category of C Q -modules 5 / 17

  10. Construction of cluster categories Cluster categories (type A n ) Let Q be a quiver of Dynkin type A n . C Q path algebra of Q 1 2 3 α β { e 1 , e 2 , e 3 , α, β, β ◦ α } C Q -mod: category of C Q -modules Cluster category C ( Q ) :=D b ( C Q ) /τ − 1 [1] [Buan-Marsh-Reineke-Reiten-Todorov ’05, Caldero-Chapoton-Schiffler ’05] 5 / 17

  11. Construction of cluster categories Cluster categories (type A n ) Let Q be a quiver of Dynkin type A n . C Q path algebra of Q 1 2 3 α β { e 1 , e 2 , e 3 , α, β, β ◦ α } C Q -mod: category of C Q -modules Cluster category C ( Q ) :=D b ( C Q ) /τ − 1 [1] [Buan-Marsh-Reineke-Reiten-Todorov ’05, Caldero-Chapoton-Schiffler ’05] C ( Q ) equiv to C ( Q ′ ) for Q and Q ′ different orientations of A n . Intrinsic construction? 5 / 17

  12. ( k , n ) - diagrams Alternating strand diagrams (Postnikov ’06), on disk (surfaces). n marked points on boundary, { 1 , 2 , . . . , n } , clockwise S i , i = 1 , . . . , n oriented strands, S i : i �→ i + k (reduce mod n ) 6 / 17

  13. ( k , n ) - diagrams Alternating strand diagrams (Postnikov ’06), on disk (surfaces). n marked points on boundary, { 1 , 2 , . . . , n } , clockwise S i , i = 1 , . . . , n oriented strands, S i : i �→ i + k (reduce mod n ) Rules ◮ crossings alternate, multiplicity 2, transversal ◮ no un-oriented lenses, no self-crossings ◮ up to isotopy fixing endpoints, up to two equivalences: 6 / 17

  14. Example of a (3 , 7)-diagram 1 7 567 167 156 2 157 456 147 145 6 127 345 245 124 3 123 5 234 4 7 / 17

  15. Example of a (3 , 7)-diagram 1 7 567 167 156 2 157 456 147 145 6 127 345 245 124 3 123 5 234 4 Alternating regions. Label i if to the left of S i . Always k labels. 7 / 17

  16. Dimer models Definition (dimer model with boundary) A (finite, oriented) dimer model with boundary is Q = ( Q 0 , Q 1 , Q 2 ) with 1. Q 2 = Q + 2 ⊔ Q − 2 faces, ∂ : Q 2 → Q cyc , F �→ ∂ F 2. Arrows have face mult. 2 or 1 : internal or boundary arrows. 3. arrows at each vertex alternate “in”/“out” 8 / 17

  17. Dimer models Definition (dimer model with boundary) A (finite, oriented) dimer model with boundary is Q = ( Q 0 , Q 1 , Q 2 ) with 1. Q 2 = Q + 2 ⊔ Q − 2 faces, ∂ : Q 2 → Q cyc , F �→ ∂ F 2. Arrows have face mult. 2 or 1 : internal or boundary arrows. 3. arrows at each vertex alternate “in”/“out” Remark Q as above � oriented surface | Q | with boundary. Source for dimer models: ( k , n )-diagrams. 8 / 17

  18. D a ( k , n )-diagram � Q ( D ) a dimer with boundary: k -subsets: Q ( D ) 0 . Arrows: “flow”. Faces: oriented regions in D . 567 167 156 157 456 147 145 127 345 245 124 123 234 9 / 17

  19. D a ( k , n )-diagram � Q ( D ) a dimer with boundary: k -subsets: Q ( D ) 0 . Arrows: “flow”. Faces: oriented regions in D . 567 567 167 167 156 156 157 157 456 456 147 145 145 147 127 127 245 345 245 124 345 124 123 234 123 234 9 / 17

  20. Dimer algebras Definition (dimer algebra) Q dimer model w boundary. The dimer algebra of Q is Λ Q := C Q /∂ W . W : natural potential on Q , � � W = W Q := F − F F ∈ Q + F ∈ Q − 2 2 ∂ W : cyclic derivatives wrt internal arrows only. 10 / 17

  21. Dimer algebras Definition (dimer algebra) Q dimer model w boundary. The dimer algebra of Q is Λ Q := C Q /∂ W . W : natural potential on Q , � � W = W Q := F − F F ∈ Q + F ∈ Q − 2 2 ∂ W : cyclic derivatives wrt internal arrows only. α an arrow in F 1 and in F 2 . Two cycles p 1 ◦ α and p 2 ◦ α . 10 / 17

  22. Dimer algebras Definition (dimer algebra) Q dimer model w boundary. The dimer algebra of Q is Λ Q := C Q /∂ W . W : natural potential on Q , � � W = W Q := F − F F ∈ Q + F ∈ Q − 2 2 ∂ W : cyclic derivatives wrt internal arrows only. α an arrow in F 1 and in F 2 . Two cycles p 1 ◦ α and p 2 ◦ α . ∂ W / ( ∂α ) : p 1 = p 2 . 10 / 17

  23. ... and their boundary Q dimer model w boundary. Λ Q = C Q /∂ W the dimer algebra of Q . Definition (boundary algebra of Q ) Let e b be the sum of the boundary idempotents of kQ . Then we define the boundary algebra of Q as B Q := e b Λ Q e b 11 / 17

  24. Module category with Grassmannian structure JKS-algebra [Jensen-King-Su] Γ n : vertices 1 , 2 , . . . , n , arrows: x i : i − 1 → i , y i : i → i − 1. x 6 6 y 6 1 B := B k , n := C Γ n / (rel’s) x 1 x 5 y 5 y 1 (rel’s): “ xy = yx ”, “ x k = y n − k ”. 5 2 y 4 y 2 x 4 x 2 4 y 3 3 x 3 12 / 17

  25. Module category with Grassmannian structure JKS-algebra [Jensen-King-Su] Γ n : vertices 1 , 2 , . . . , n , arrows: x i : i − 1 → i , y i : i → i − 1. x 6 6 y 6 1 B := B k , n := C Γ n / (rel’s) x 1 x 5 y 5 y 1 (rel’s): “ xy = yx ”, “ x k = y n − k ”. 5 2 t := � x i y i is central in B . y 4 y 2 Centre of B is Z = C [ t ]. x 4 x 2 4 y 3 3 x 3 12 / 17

  26. Module category with Grassmannian structure JKS-algebra [Jensen-King-Su] Γ n : vertices 1 , 2 , . . . , n , arrows: x i : i − 1 → i , y i : i → i − 1. x 6 6 y 6 1 B := B k , n := C Γ n / (rel’s) x 1 x 5 y 5 y 1 (rel’s): “ xy = yx ”, “ x k = y n − k ”. 5 2 t := � x i y i is central in B . y 4 y 2 Centre of B is Z = C [ t ]. x 4 x 2 4 y 3 3 x 3 Frobenius category F = F k , n := CM( B k , n ) = { M | M free over Z } max. CM modules. 12 / 17

  27. Module category with Grassmannian structure JKS-algebra [Jensen-King-Su] Γ n : vertices 1 , 2 , . . . , n , arrows: x i : i − 1 → i , y i : i → i − 1. x 6 6 y 6 1 B := B k , n := C Γ n / (rel’s) x 1 x 5 y 5 y 1 (rel’s): “ xy = yx ”, “ x k = y n − k ”. 5 2 t := � x i y i is central in B . y 4 y 2 Centre of B is Z = C [ t ]. x 4 x 2 4 y 3 3 x 3 Frobenius category F = F k , n := CM( B k , n ) = { M | M free over Z } max. CM modules. M ∈ F : collection of copies of Z , linked via x i , y i , on a cylinder. 12 / 17

  28. Rank one modules M I for I = { 1 , 4 , 5 } . Infinite dimensional. Rim. 6 7 y 3 x 4 y 7 2 7 x 1 y 2 x 5 y 6 1 13 / 17

  29. Properties of F Properties (Jensen-King-Su, B-Bogdanic) ◮ F is Frobenius = ⇒ F triangulated; ◮ rk 1 indecomposables in bijection with k -subsets; ◮ Ext 1 ( M I , M J ) = 0 iff I and J don’t cross; ◮ T := � I ∈ D M I is maximal rigid in F ; so F a cluster category. 14 / 17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend