single top in the smeft
play

Single Top in the SMEFT Rhea Moutafis July 11, 2019 OVERVIEW - PowerPoint PPT Presentation

Workshop on Standard Model Effective Theory Single Top in the SMEFT Rhea Moutafis July 11, 2019 OVERVIEW Introduction SMEFT Basics Relevant Operators Correlated Uncertainties Results Conclusion 2 INTRODUCTION 3 INTRODUCTION at LHC:


  1. Workshop on Standard Model Effective Theory Single Top in the SMEFT Rhea Moutafis July 11, 2019

  2. OVERVIEW Introduction SMEFT Basics Relevant Operators Correlated Uncertainties Results Conclusion 2

  3. INTRODUCTION 3

  4. INTRODUCTION • at LHC: production of new particles or imprints via interferences & virtual effects • single top especially sensitive to electroweak interactions • subset of top sector 
 possibility to focus on the technical side • goal: constrain 7 main dim-6 operators concerning single top with SFitter 4

  5. SMEFT BASICS 5

  6. 
 
 
 SMEFT BASICS • effects of new heavy BSM particles: 
 N d 6 c i ∑ Λ 2 𝒫 (6) ℒ SMEFT = ℒ SM + + . . . , i i • cross sections: N d 6 N d 6 c i c j c i ∑ ∑ σ SMEFT = σ SM + Λ 2 σ i + Λ 4 ˜ σ ij + . . . , i i , j 6

  7. SMEFT BASICS b = ( 1 + ) 2 c 3 φ q v 2 g 4 ( s − m 2 t ) 2 (2 s + m 2 t ) σ u ¯ d → t ¯ Λ 2 384 π s 2 ( s − m 2 W ) 2 g 2 m t m W ( s − m 2 t ) 2 + c tW 2 π Λ 2 s ( s − m 2 W ) 2 8 g 2 ( s − m 2 t ) 2 (2 s + m 2 t ) + c 3,1 Qq 48 π Λ 2 s 2 ( s − m 2 W ) 7

  8. RELEVANT OPERATORS 8

  9. RELEVANT OPERATORS VERTEX CHANNELS s-channel t-channel W -assoc. Z -assoc. t decay 9

  10. RELEVANT OPERATORS VERTEX CHANNELS OPERATORS ‡ 𝒫 ( ij ) s-channel q i σ μν T A u j ) ˜ φ G A uG = (¯ μν ‡ 𝒫 ( ij ) φ W I uW = (¯ q i σ μν τ I u j ) ˜ μν t-channel ⟷ 𝒫 3( ij ) φ q = ( φ † iD I q i γ μ τ I q j ) μ φ )(¯ W -assoc. ‡ 𝒫 ( ij ) q i σ μν τ I d j ) φ W I dW = (¯ μν ⟷ ‡ 𝒫 1( ij ) φ † iD μ φ )( ¯ φ ud = ( ˜ u i γ μ d j ) Z -assoc. 𝒫 1( ijkl ) = (¯ q i γ μ q j )(¯ q k γ μ q l ) qq t decay 𝒫 3( ijkl ) q i γ μ τ I q j )(¯ q k γ μ τ I q l ) = (¯ qq 10

  11. RELEVANT OPERATORS VERTEX CHANNELS OPERATORS WILSON COEFFICIENTS c tG Re { 𝒫 (33) ‡ 𝒫 ( ij ) s-channel q i σ μν T A u j ) ˜ φ G A uG = (¯ uG } μν c tW Re { 𝒫 (33) ‡ 𝒫 ( ij ) φ W I uW } uW = (¯ q i σ μν τ I u j ) ˜ μν t-channel ⟷ c 3 𝒫 3(33) 𝒫 3( ij ) φ q = ( φ † iD I q i γ μ τ I q j ) μ φ )(¯ φ q φ q W -assoc. c bW Re { 𝒫 (33) ‡ 𝒫 ( ij ) q i σ μν τ I d j ) φ W I dW } dW = (¯ μν ⟷ Re { 𝒫 (33) c φ tb ‡ 𝒫 1( ij ) φ † iD μ φ )( ¯ φ ud } φ ud = ( ˜ u i γ μ d j ) Z -assoc. + 1 c 3,1 𝒫 1( ijkl ) 𝒫 3( ii 33) 6( 𝒫 1( i 33 i ) − 𝒫 3( i 33 i ) = (¯ q i γ μ q j )(¯ q k γ μ q l ) ) qq qq qq qq Qq t decay c 3,8 𝒫 1( i 33 i ) − 𝒫 3( i 33 i ) 𝒫 3( ijkl ) q i γ μ τ I q j )(¯ q k γ μ τ I q l ) = (¯ qq qq qq Qq 11

  12. RELEVANT OPERATORS VERTEX CHANNELS OPERATORS WILSON COEFFICIENTS c tG Re { 𝒫 (33) ‡ 𝒫 ( ij ) s-channel q i σ μν T A u j ) ˜ φ G A uG = (¯ uG } μν c tW Re { 𝒫 (33) ‡ 𝒫 ( ij ) φ W I uW } uW = (¯ q i σ μν τ I u j ) ˜ μν t-channel ⟷ c 3 𝒫 3(33) 𝒫 3( ij ) φ q = ( φ † iD I q i γ μ τ I q j ) μ φ )(¯ φ q φ q W -assoc. c bW Wtb Re { 𝒫 (33) ‡ 𝒫 ( ij ) q i σ μν τ I d j ) φ W I dW } dW = (¯ μν ⟷ Re { 𝒫 (33) c φ tb ‡ 𝒫 1( ij ) φ † iD μ φ )( ¯ φ ud } φ ud = ( ˜ u i γ μ d j ) Z -assoc. + 1 c 3,1 𝒫 1( ijkl ) 𝒫 3( ii 33) 6( 𝒫 1( i 33 i ) − 𝒫 3( i 33 i ) = (¯ q i γ μ q j )(¯ q k γ μ q l ) ) qq qq qq qq Qq t decay c 3,8 𝒫 1( i 33 i ) − 𝒫 3( i 33 i ) 𝒫 3( ijkl ) q i γ μ τ I q j )(¯ q k γ μ τ I q l ) = (¯ qq qq qq Qq 12

  13. RELEVANT OPERATORS VERTEX CHANNELS OPERATORS WILSON COEFFICIENTS c tG Re { 𝒫 (33) ‡ 𝒫 ( ij ) q i σ μν T A u j ) ˜ φ G A s-channel uG = (¯ uG } μν c tW Re { 𝒫 (33) ‡ 𝒫 ( ij ) φ W I uW } uW = (¯ q i σ μν τ I u j ) ˜ μν t-channel ⟷ c 3 𝒫 3(33) 𝒫 3( ij ) φ q = ( φ † iD I q i γ μ τ I q j ) μ φ )(¯ φ q φ q W -assoc. c bW qq’q’’t Re { 𝒫 (33) ‡ 𝒫 ( ij ) q i σ μν τ I d j ) φ W I dW } dW = (¯ μν ⟷ Re { 𝒫 (33) c φ tb ‡ 𝒫 1( ij ) φ † iD μ φ )( ¯ φ ud } φ ud = ( ˜ u i γ μ d j ) Z -assoc. + 1 c 3,1 𝒫 1( ijkl ) 𝒫 3( ii 33) 6( 𝒫 1( i 33 i ) − 𝒫 3( i 33 i ) = (¯ q i γ μ q j )(¯ q k γ μ q l ) ) qq qq qq qq Qq t decay c 3,8 𝒫 1( i 33 i ) − 𝒫 3( i 33 i ) 𝒫 3( ijkl ) q i γ μ τ I q j )(¯ q k γ μ τ I q l ) = (¯ qq qq qq Qq 13

  14. RELEVANT OPERATORS VERTEX CHANNELS OPERATORS WILSON COEFFICIENTS c tG Re { 𝒫 (33) ‡ 𝒫 ( ij ) q i σ μν T A u j ) ˜ φ G A s-channel uG = (¯ uG } μν c tW Re { 𝒫 (33) ‡ 𝒫 ( ij ) φ W I uW } uW = (¯ q i σ μν τ I u j ) ˜ μν t-channel ⟷ c 3 𝒫 3(33) 𝒫 3( ij ) φ q = ( φ † iD I q i γ μ τ I q j ) μ φ )(¯ φ q φ q W -assoc. c bW ttg Re { 𝒫 (33) ‡ 𝒫 ( ij ) q i σ μν τ I d j ) φ W I dW } dW = (¯ μν ⟷ Re { 𝒫 (33) c φ tb ‡ 𝒫 1( ij ) φ † iD μ φ )( ¯ φ ud } φ ud = ( ˜ u i γ μ d j ) Z -assoc. + 1 c 3,1 𝒫 1( ijkl ) 𝒫 3( ii 33) 6( 𝒫 1( i 33 i ) − 𝒫 3( i 33 i ) = (¯ q i γ μ q j )(¯ q k γ μ q l ) ) qq qq qq qq Qq t decay c 3,8 𝒫 1( i 33 i ) − 𝒫 3( i 33 i ) 𝒫 3( ijkl ) q i γ μ τ I q j )(¯ q k γ μ τ I q l ) = (¯ qq qq qq Qq 14

  15. RELEVANT OPERATORS VERTEX CHANNELS OPERATORS WILSON COEFFICIENTS c tG Re { 𝒫 (33) ‡ 𝒫 ( ij ) q i σ μν T A u j ) ˜ φ G A s-channel uG = (¯ uG } μν c tW Re { 𝒫 (33) ‡ 𝒫 ( ij ) φ W I uW } uW = (¯ q i σ μν τ I u j ) ˜ μν t-channel ⟷ c 3 𝒫 3(33) 𝒫 3( ij ) φ q = ( φ † iD I q i γ μ τ I q j ) μ φ )(¯ φ q φ q W -assoc. c bW ttZ, tt γ Re { 𝒫 (33) ‡ 𝒫 ( ij ) q i σ μν τ I d j ) φ W I dW } dW = (¯ μν ⟷ Re { 𝒫 (33) c φ tb ‡ 𝒫 1( ij ) φ † iD μ φ )( ¯ φ ud } φ ud = ( ˜ u i γ μ d j ) Z -assoc. + 1 c 3,1 𝒫 1( ijkl ) 𝒫 3( ii 33) 6( 𝒫 1( i 33 i ) − 𝒫 3( i 33 i ) = (¯ q i γ μ q j )(¯ q k γ μ q l ) ) qq qq qq qq Qq t decay c 3,8 𝒫 1( i 33 i ) − 𝒫 3( i 33 i ) 𝒫 3( ijkl ) q i γ μ τ I q j )(¯ q k γ μ τ I q l ) = (¯ qq qq qq Qq 15

  16. CORRELATED UNCERTAINTIES 16

  17. CORRELATED UNCERTAINTIES • theoretical: identical predictions 
 averaging (alternative nuisance parameters, but we get too many) • systematic: build matrix of uncertainties, write correlated ones in same column • all handled with DataPrep 17

  18. CORRELATED UNCERTAINTIES 2 2 contributions for correlated uncertainties contributions for correlated uncertainties χ χ 2 s-channel χ t-channel tW tZ 25 W helicity 20 15 10 5 0 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 c tW 18

  19. CORRELATED UNCERTAINTIES 2 2 contributions for uncorrelated theoretical uncertainties contributions for uncorrelated theoretical uncertainties χ χ 2 s-channel χ t-channel 45 tW tZ 40 W helicity 35 30 25 20 15 10 5 0 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 c tW 19

  20. CORRELATED UNCERTAINTIES 2 2 2 2 contributions for uncorrelated systematic uncertainties contributions for uncorrelated systematic uncertainties contributions for uncorrelated theoretical uncertainties contributions for uncorrelated theoretical uncertainties χ χ χ χ 2 2 s-channel s-channel χ χ t-channel t-channel 45 45 tW tW tZ tZ 40 40 W helicity W helicity 35 35 30 30 25 25 20 20 15 15 10 10 5 5 0 0 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 c c tW tW 20

  21. RESULTS 21

  22. RESULTS Bounds at standard dataset & theory Bounds at standard dataset & theory ] all coefficients: 68% conf. int. -2 [TeV all coefficients: 95% conf. int. 4 one coefficient: 68% conf. int. one coefficient: 95% conf. int. reference (all coefficients): 95% conf. int. 2 Λ 3 8.7 / i c 2 1 0 -1 -2 -3 -4 -27 3,1 3,8 3 c c c c c c c q tG tW bW φ tb Qq Qq φ 22

  23. RESULTS Bounds without kinematic distributions Bounds without kinematic distributions ] standard (all coefficients): 68% conf. int. -2 standard (all coefficients): 95% conf. int. [TeV all coefficients: 68% conf. int. 2 all coefficients: 95% conf. int. one coefficient: 68% conf. int. one coefficient: 95% conf. int. 2 Λ / i c 1 0 -1 -2 -3 -4 3,1 3,8 3 c c c c c c c φ q tG tW bW φ tb Qq Qq 23

  24. RESULTS Bounds without measurements at 7 TeV Bounds without measurements at 7 TeV ] standard (all coefficients): 68% conf. int. -2 standard (all coefficients): 95% conf. int. [TeV all coefficients: 68% conf. int. 2 all coefficients: 95% conf. int. one coefficient: 68% conf. int. one coefficient: 95% conf. int. 2 Λ / i c 1 0 -1 -2 -3 -4 3,1 3,8 3 c c c c c c c φ q tG tW bW φ tb Qq Qq 24

  25. RESULTS Bounds without NLO corrections Bounds without NLO corrections ] standard (all coefficients): 68% conf. int. -2 standard (all coefficients): 95% conf. int. [TeV all coefficients: 68% conf. int. 8 all coefficients: 95% conf. int. one coefficient: 68% conf. int. one coefficient: 95% conf. int. 2 Λ / i c 6 4 2 0 -2 -4 3,8 c 3,1 3 c c c c c c Qq q tG tW bW φ tb Qq φ 25

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend