simulation of flexible multibody systems
play

Simulation of Flexible Multibody Systems Robert Altmann Technische - PowerPoint PPT Presentation

Simulation of Flexible Multibody Systems Robert Altmann Technische Universit at Berlin raltmann@math.tu-berlin.de Trogir 2011, October 12th R. Altmann (TU Berlin) Simulation of Flexible MBS Trogir 12.10.2011 1 / 6 Multibody Dynamics


  1. Simulation of Flexible Multibody Systems Robert Altmann Technische Universit¨ at Berlin raltmann@math.tu-berlin.de Trogir 2011, October 12th R. Altmann (TU Berlin) Simulation of Flexible MBS Trogir 12.10.2011 1 / 6

  2. Multibody Dynamics Dynamics of multiple rigid bodies E.g. robots R. Altmann (TU Berlin) Simulation of Flexible MBS Trogir 12.10.2011 2 / 6

  3. Multibody Dynamics Dynamics of multiple rigid bodies E.g. robots, slider crank mechanism y 2 Y x 2 p 2 y 1 x 1 p 1 X DAE of index 3 p ) − G T λ M ( p )¨ p = f ( p, ˙ 0 = g ( p ) R. Altmann (TU Berlin) Simulation of Flexible MBS Trogir 12.10.2011 2 / 6

  4. Flexible Multibody Systems Assumption of rigid bodies not accurate Allow deformable bodies R. Altmann (TU Berlin) Simulation of Flexible MBS Trogir 12.10.2011 3 / 6

  5. Flexible Multibody Systems Assumption of rigid bodies not accurate Allow deformable bodies Y p 2 p 1 u ∈ H 1 0 (Ω) X Combine deformation and rigid motion Linear elasticity (PDE) R. Altmann (TU Berlin) Simulation of Flexible MBS Trogir 12.10.2011 3 / 6

  6. Equations of Motion Euler-Lagrange Formalism � ∂L � d − ∂L ∂p = 0 with strain energy ∂ ˙ dt p Principle of virtual work ◮ Weak formulation of dynamic elasticity problem ◮ Moving reference frame ◮ Rigid body transformation u �→ r = y ( t ) + A ( φ )[ x + u ( x, t )] Langrange multipliers ◮ Weak formulation of dynamic elasticity problem ◮ Rigid motion as (weak) constraint M ¨ u + D ˙ u + K u + B ∗ λ u = F B u = G R. Altmann (TU Berlin) Simulation of Flexible MBS Trogir 12.10.2011 4 / 6

  7. Simulation Coupled system of ODEs, PDEs and algebraic constraints Different time scales for rigid motion / elastic deformation Standard procedure: Semi-discretization in ◮ Time (Rothe method) ◮ Space (Method of Lines) → DAE of index 3 Finite Element discretization R. Altmann (TU Berlin) Simulation of Flexible MBS Trogir 12.10.2011 5 / 6

  8. Simulation Coupled system of ODEs, PDEs and algebraic constraints Different time scales for rigid motion / elastic deformation Standard procedure: Semi-discretization in ◮ Time (Rothe method) ◮ Space (Method of Lines) → DAE of index 3 Finite Element discretization My work Multiphysics Need adaptivity in space and time ! Method of Lines with mesh update, index reduction Possibility to switch between index- 1 formulations R. Altmann (TU Berlin) Simulation of Flexible MBS Trogir 12.10.2011 5 / 6

  9. Literature Peter Kunkel and Volker Mehrmann, Differential-algebraic equations , EMS Textbooks in Mathematics, European Mathematical Society (EMS), Z¨ urich, 2006, Analysis and numerical solution. MR 2225970 (2007e:34001) B. Simeon, Modelling a flexible slider crank mechanism by a mixed system of DAEs and PDEs , Mathematical and Computer Modelling of Dynamical Systems 2 (1996), 1–18. , Numerische Simulation gekoppelter Systeme von partiellen und dierential-algebraischen Gleichungen der Mehrk¨ orperdynamik , Rechnerunterst¨ utzte Verfahren, vol. 325, VDI Verlag Dusseldorf, 2000. R. Altmann (TU Berlin) Simulation of Flexible MBS Trogir 12.10.2011 6 / 6

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend