a linearised input output representation for control
play

A Linearised Input-Output Representation for Control Synthesis in - PowerPoint PPT Presentation

12.3 & paper ES A Linearised Input-Output Representation for Control Synthesis in Flexible Multibody System A Linearised Input-Output Representation for Dynamics Control Synthesis in Flexible Multibody System Layout Dynamics Finite


  1. § 12.3 & paper ES A Linearised Input-Output Representation for Control Synthesis in Flexible Multibody System A Linearised Input-Output Representation for Dynamics Control Synthesis in Flexible Multibody System Layout Dynamics • Finite element representation of flexible multibody systems • Equations of motion and reaction • Linearised equations of motion and reaction J.B. Jonker, J. van Dijk and R.G.K.M. Aarts • Linearised state-space equations Department of Mechanical Automation and Mechatronics • Stationary and equilibrium solutions University of Twente • From state-space equations to transfer function(s) The Netherlands • Illustrative examples • Conclusions Jonker/van Dijk/Aarts FMSA4CP / Input-Output / 1 Jonker/van Dijk/Aarts FMSA4CP / Input-Output / 2 § 2 Finite element representation of multibody systems Planar flexible beam element y R q n y � � cos φ p − sin φ p R p ≡ R q n x sin φ p cos φ p φ q � � q cos φ q − sin φ q R q ≡ β ( k ) sin φ q cos φ q R p n y R p n x n y l ( k ) ≡ x q − x p φ p p = [ x q − x p , y q − y p ] T x n x Physical description of a flexible multibody system � ( x q − x p ) 2 + ( y q − y p ) 2 � 1 / 2 − l ( k ) Elongation: ε ( k ) = D ( k ) ( x ( k ) ) = 1 1 0 ε ( k ) = D ( k ) ( x ( k ) ) = − ( R p n y , l ( k ) ) Bending: Element k with set of nodal coordinates x ( k ) (Cartesian and rotational) in a 2 2 fixed inertial coordinate system and deformation modes specified by a vector of ε ( k ) = D ( k ) ( x ( k ) ) = ( R q n y , l ( k ) ) deformation parameters e ( k ) . 3 3 Jonker/van Dijk/Aarts FMSA4CP / Input-Output / 3 Jonker/van Dijk/Aarts FMSA4CP / Input-Output / 4

  2. § 3 Kinematic analysis Geometric transfer functions q : generalised coordinates x ( m ) and e ( m ) x = F ( x ) ( q ) Deformation equations e = F ( e ) ( q ) e = D ( x ) x : nodal coordinates e = ∂ D Velocities x = D x D ˙ ˙ x e : deformation mode coordinates ∂ ˙ x = D q F ( x ) ˙ D q F : first-order geometric transfer function ˙ q Partitioning: e = D q F ( e ) ˙ D 2 ˙ q q F : second-order geometric transfer function   x ( o ) fixed coordinates Accelerations    x ( c )  x = dependent nodal coordinates   q F ( x ) ˙ x = D 2 q + D q F ( x ) ¨ x ( m ) ¨ q ˙ q absolute generalized / independent coordinates q F ( e ) ˙ e = D 2 q + D q F ( e ) ¨ ¨ q ˙ q   e ( o ) rigid / zero deformations    e ( m )  e = relative generalized /independent coordinates   e ( c ) dependent deformations Generalised coordinates x ( m ) , e ( m ) collected in vector q with ndof kinematic degrees of freedom. Jonker/van Dijk/Aarts FMSA4CP / Input-Output / 5 Jonker/van Dijk/Aarts FMSA4CP / Input-Output / 6 § 6 § 4 Equations of reaction for unknown stress resultants and reaction forces Equations of motion expressed the kinematic degrees of freedom q :     f ( o ) σ ( o ) q = D F ( x ) T ( f − M D 2 F ( x,c ) ˙ q ) − D F ( e ) T σ     ¯ M ( q )¨ q ˙ ( D x D ) T σ = f − M ¨ f ( c )    σ ( m )  with partitioning f =  and σ = x    f ( m ) σ ( c ) M = D F ( x ) T M D F ( x ) ¯ system mass matrix       f ( o ) − M ( o,c ) ¨ x ( c ) − M ( o,m ) ¨ ( D ( o ) D ( o ) ) T ( D ( o ) D ( m ) ) T ( D ( o ) D ( c ) ) T x ( m ) σ ( o )       − M ( c,c ) ¨ x ( c ) − M ( c,m ) ¨ ( D ( c ) D ( o ) ) T ( D ( c ) D ( m ) ) T ( D ( c ) D ( c ) ) T D F ( x ) T f = D F ( x,c ) T f ( c ) + D F ( x,m ) T f ( m ) σ ( m ) f ( c ) x ( m )  =      nodal forces f ( m ) − M ( m,c ) ¨ x ( c ) − M ( m,m ) ¨ ( D ( m ) D ( o ) ) T ( D ( m ) D ( m ) ) T ( D ( m ) D ( c ) ) T σ ( c ) x ( m ) D F ( e ) T σ = D F ( e,m ) T σ ( m ) + D F ( e,c ) T σ ( c ) stress resultants If the square matrix [( D ( c ) D ( o ) ) T , ( D ( c ) D ( m ) ) T ] is non-singular, then     � � � �� � � � � �  σ ( m ) S ( m,m ) S ( m,c )  S ( m,m ) S ( m,c ) σ ( m ) e ( m ) e ( m ) σ ( o ) � x ( m ) − ( D ( c ) D ( c ) ) T σ ( c ) � ˙ f ( c ) − M ( c,c ) ¨ x ( c ) − M ( c,m ) ¨ a = ˜  + d d  = + D 1 , σ ( c ) σ ( c ) S ( c,m ) S ( c,c ) e ( c ) S ( c,m ) S ( c,c ) e ( c ) σ ( m ) ˙ a d d � ( D ( c ) D ( o ) ) T , ( D ( c ) D ( m ) ) T � − 1 . Elastic coefficients S ( m,m ) , S ( m,c ) and S ( c,c ) (symmetric matrices) with ˜ D 1 = Viscous damping coefficients S ( m,m ) , S ( m,c ) and D ( c,c ) (symmetric matrices) d d d Vector σ ( c ) is known from the previous slide, so the reaction forces f ( o ) and Driving forces and torques σ ( m ) and σ ( c ) a . a the driving forces f ( m ) are then determined as well. Jonker/van Dijk/Aarts FMSA4CP / Input-Output / 7 Jonker/van Dijk/Aarts FMSA4CP / Input-Output / 8

  3. § 7 & § 12.3 § 5 State equations Linearised equations: prefix δ indicates small variations � � q d : q d � � � � � � dynamic degrees of freedom (to be computed) q d q d δ q d q = q r : q r 0 x = x 0 + δ x q = q 0 + δ q so q = = + rheonomic degrees of freedom (known) q r q r δ q r 0     � ¯ � � � � � � � � �  D q d F ( x ) T  D q d F ( e ) T ¯ q d q d q d q d M dd M dr ¨ ˙ ˙ δ ˙  ( f − M D 2 F ( x ) ˙  σ 0 = q ˙ q ) − x = ˙ ˙ x 0 + δ ˙ x q = ˙ ˙ q 0 + δ ˙ q so ˙ q = = + ¯ ¯ q r q r q r q r D q r F ( x ) T D q r F ( e ) T M rd M rr ¨ ˙ ˙ δ ˙ 0 � � � � � � q d q d q d ¨ ¨ δ ¨ q r ¯ q d = ¯ q , t ) − ¯ 0 M dd ( q )¨ f d ( q , ˙ M dr ¨ f : nodal forces x = ¨ ¨ x 0 + δ ¨ x q = ¨ ¨ q 0 + δ ¨ q so ¨ q = = + q r q r q r ¨ ¨ δ ¨ 0 M dd = D q d F ( x ) T M D q d F ( x ) ¯ σ : stress resultants M dr = D q d F ( x ) T M D q r F ( x ) ¯ M : mass matrix Stresses σ = σ 0 + δ σ a and forces f = f 0 + δ f . f d = D q d F ( x ) T ( f − M D 2 F ( x ) ˙ q ) − D q d F ( e ) T σ ¯ q ˙ Linearised equations of kinematics δ x = D F ( x ) δ q , Non-linear state-space equations q + ( D 2 F ( x ) ˙ x = D F ( x ) δ ˙ δ ˙ q ) δ q , � � � � � � q d q d q d ˙ q + 2( D 2 F ( x ) ˙ q + D 3 F ( x ) ˙ d x = D F ( x ) δ ¨ q + ( D 2 F ( x ) ¨ δ ¨ q ) δ ˙ q ˙ q ) δ q = with state vector z = M − 1 q d q d ¯ dd (¯ f d − ¯ q r ) ˙ ˙ dt M dr ¨ with third-order geometric transfer function D 3 F ( x ) . Jonker/van Dijk/Aarts FMSA4CP / Input-Output / 9 Jonker/van Dijk/Aarts FMSA4CP / Input-Output / 10 § 7.2 § 7.3 Linearised equations of motion Linearised equations of reaction � � � � δ q = D F ( x ) T δ f − D F ( e ) T δ σ a ¯ C + ¯ ¯ K + ¯ ¯ N + ¯ M δ ¨ q + D δ ˙ q + G First order terms in Taylor series expansion: with D F ( x ) T δ f = D F ( x,c ) T δ f ( c ) + D F ( x,m ) T δ f ( m ) ( D x D ) T δ σ + (( D 2 x D ) T σ ) δ x = δ f + ( D x f in ) δ x + ( D ˙ x f in ) δ ˙ x and D F ( e ) T δ σ a = D F ( e,m ) T δ σ ( m ) + D F ( e,c ) T δ σ ( c ) a . − D x ( M ¨ x ) δ x − M δ ¨ a x or ( D x D ) T δ σ = δ f + M ( x ) δ ¨ q − ( N ( x ) + G ( x ) ) δ q q − C ( x ) δ ˙ M = D F ( x ) T M D F ( x ) ¯ C = D F ( x ) T � � x f in ) D F ( x ) + 2 M D 2 F ( x ) ˙ ( D ˙ ¯ q M ( x ) = M D F ( x ) D = D F ( e ) T S d D F ( e ) ¯ C ( x ) = ( D ˙ x f in ) D F ( x ) + 2 M D 2 F ( x ) ˙ q K = D F ( e ) T S D F ( e ) ¯ N ( x ) = D x ( M ¨ x − f in ) D F ( x ) + ( D ˙ x f in ) D 2 F ( x ) ˙ q N = D F ( x ) T � x − f in ) D F ( x ) + ( D ˙ x f in ) D 2 F ( x ) ˙ q + D 3 F ( x ) ˙ D x ( M ¨ + M ( D 2 F ( x ) ¨ ¯ q q ˙ q ) � �� q + ( D 3 F ( x ) ˙ + D F ( e ) T S d D 2 F ( e ) ˙ D 2 F ( x ) ¨ G ( x ) = (( D 2 x D ) T σ ) D F ( x ) + M q )˙ q q G = − D 2 F ( x ) T [ f − M ¨ x ] − D 2 F ( e ) T σ ¯ Jonker/van Dijk/Aarts FMSA4CP / Input-Output / 11 Jonker/van Dijk/Aarts FMSA4CP / Input-Output / 12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend