simulation du syst me cardiovasculaire et mod lisation r
play

Simulation du systme cardiovasculaire et modlisation rduite 24 - PowerPoint PPT Presentation

COLLOQUE EDP-NORMANDIE CAEN 2013 Simulation du systme cardiovasculaire et modlisation rduite 24 octobre 2013 Jean-Frdric Gerbeau & Damiano Lombardi INRIA & UPMC Paris 6 France COLLOQUE EDP-NORMANDIE CAEN 2013 Motivation:


  1. COLLOQUE EDP-NORMANDIE CAEN 2013 Simulation du système cardiovasculaire et modélisation réduite 24 octobre 2013 Jean-Frédéric Gerbeau & Damiano Lombardi INRIA & UPMC Paris 6 France

  2. COLLOQUE EDP-NORMANDIE CAEN 2013 Motivation: Blood flows • Output of interest Ex: Pressure drop • Optimization Ex: arterial by-pass optimization (Quarteroni-Rozza, Aortic coarctation Sankaran-Marsden) • Rapid prototyping Boundary conditions (Windkessel), constitutive law coefficients,... • Moderate variability Examples: pulmonary arteries Astorino, JFG, Pantz, Traoré, CMAME 2009 2

  3. COLLOQUE EDP-NORMANDIE CAEN 2013 Motivation: electrophysiology • Optimization Ex: optimize multi-sites pacing • Inverse problems Electrocardiology Forward Inverse Potential in heart and the torso Electrocardiogram (ECG) 3

  4. COLLOQUE EDP-NORMANDIE CAEN 2013 Reduced Order Modeling Many options: • Simplify the geometry and/or the physics Examples: - 1D model for blood flows (Formaggia, Peiró, ...) - Eikonal model in electrophysiology (Franzone, Sermesant, Frangi,...) • Keep the equations and the geometry, but reduce the approximation space Examples: - Reduced Basis Method ( Patera, Maday, Quarteroni, Rozza,...) - Proper Orthogonal Decomposition (POD), or Karhunen-Loève expansion (Iollo, Farhat, Karniadakis, Kunisch, Gunzburger, Volkwein,...) 4

  5. COLLOQUE EDP-NORMANDIE CAEN 2013 POD in a nutshell • Let ( ϕ i ) i =1 ..n be a finite element basis • Full Order Model (FOM): search for u h = P n j =1 u j ϕ j such that: d dt ( u h , ϕ i ) + a ( θ ; u h , ϕ i ) = ( f, ϕ i ) , ∀ i = 1 ..n • Compute p “snapshots” (i.e. solutions at p time instants, or parameters θ ): S 1 ( u 1 1 , . . . , u 1 n ) , . . . , S p ( u p 1 , . . . , u p n ) • Let S be the matrix whose columns are the S i , i = 1 ..p . • Singular Value Decomposition: S = Φ Σ Ψ T , with Σ = diag ( σ 1 , . . . , σ p ) • ( Φ 1 , . . . , Φ N ) : N columns of Φ corresponding to the N largest σ i , N � n • Reduced Order Model (ROM): search for U h = P N j =1 U j Φ j such that: d dt ( U h , Φ i ) + a ( U h , Φ i ) = ( f, Φ i ) , ∀ i = 1 ..N 5

  6. COLLOQUE EDP-NORMANDIE CAEN 2013 Motivation ★ We are interested in problems with propagations ★ In the cardiovascular system: - cardiac electrophysiology - 1D model for arterial networks 6

  7. COLLOQUE EDP-NORMANDIE CAEN 2013 ∂ t − ∂ 2 u Example 1: ∂ u ∂ x 2 = 0 0 10 1.2 t=0 exact − 2 10 POD(10) 1 − 4 10 0.8 − 6 10 eigenvalues 0.6 − 8 10 u − 10 10 0.4 − 12 10 0.2 − 14 10 0 − 16 10 − 18 − 0.2 10 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 5 10 15 20 25 30 35 40 45 50 x n POD with 10 modes Eigenvalues Simulation : D. Lombardi 7

  8. COLLOQUE EDP-NORMANDIE CAEN 2013 Example 2: ∂ u ∂ t + c ∂ u ∂ x = 0 1 0 10 0.9 t=0 t=1 − 1 10 0.8 − 2 0.7 10 0.6 − 3 10 eigenvalues 0.5 u − 4 10 0.4 − 5 10 0.3 0.2 − 6 10 0.1 − 7 10 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 − 8 x 10 0 5 10 15 20 25 30 35 40 45 50 n Eigenvalues 1.2 exact POD(10) 1 exact POD(50) 1 0.8 0.8 0.6 0.6 0.4 u u 0.4 0.2 0.2 0 0 − 0.2 − 0.2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 x − 0.4 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 x POD with 10 modes POD with 50 modes Simulation : D. Lombardi 8

  9. COLLOQUE EDP-NORMANDIE CAEN 2013 Basic idea • Instead of N X u ( x, t ) = β j ( t ) φ j ( x ) j =1 • use something like : N X u ( x, t ) = β j ( t ) φ j ( x, t ) j =1 • Questions : • how to compute the modes (reduced basis) ? • how to propagate them ? 9

  10. COLLOQUE EDP-NORMANDIE CAEN 2013 Preliminary : Semi Classical Signal Analysis Laleg, Crépeau, Sorine (2007 & 2012) • Let u(x) be a non-negative signal and the “scattering” operator L χ ( u ) φ = − ∆ φ − χ u φ • Solve the eigenvalue problem L χ ( u ) φ = λφ • And approximate u(x) by the Deift-Trubowitz formula N − X u ( x ) = χ − 1 κ m φ 2 ˜ m m =1 with κ m = √− λ m where λ m are the negative eigenvalues • Choose χ > 0 to achieve a given accuracy • Remark: can be exact for “reflectionless” potentials 10

  11. COLLOQUE EDP-NORMANDIE CAEN 2013 Reconstruction of aortic pressure From: Laleg, Médigue, Papelier, Crépeau, et al. (2010) 11

  12. COLLOQUE EDP-NORMANDIE CAEN 2013 • In some specific cases, solitons are better the Hilbert basis, but there is no general result... 3 2.5 target target eigenfunctions eigenfunctions solitons 2.5 solitons 2 2 1.5 1.5 u u 1 1 0.5 0.5 0 0 − 0.5 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 x x 5 modes 50 modes • We will prefer the Hilbert basis ! 12

  13. COLLOQUE EDP-NORMANDIE CAEN 2013 Reduced basis definition • Schrödinger operator associated with the solution u : L χ ( u ) φ = − ∆ φ − χ u φ ( χ > 0 is a given constant) • Solve the eigenvalue problem L χ ( u ) φ m = λ m φ m • ( φ m ) m ≥ 1 is a Hilbert basis in ( L 2 ( Ω ) , h · , · i ) • Approximate u(x) by N M X u ( x, t ) = ˜ β m ( t ) φ m ( x, t ) , with β m = h u, φ m i m =1 13

  14. COLLOQUE EDP-NORMANDIE CAEN 2013 Goal • Consider a general nonlinear evolution PDE : ⇢ = F ( u ) ∂ t u u (0) = u 0 • For example: F ( u ) = ∆ u + ν u (1 − u ) • Compute the initial modes with L ( u 0 ) • Propagate the modes with an operator M (to be determined) 14

  15. COLLOQUE EDP-NORMANDIE CAEN 2013 Lax Pairs in a nutshell L ( t ) φ m ( t ) = λ m ( t ) φ m ( t ) x 1 x 1 • How do the eigenmodes evolve ? x 2 x 2 x 3 x 3 • Let Q ( t ) orthogonal such that φ m ( t ) = Q ( t ) φ m (0) ∂ t φ m ( t ) = M ( t ) φ m ( t ) • Relation between L and M ? ( ∂ t L + [ L , M ]) φ m = ∂ t λ m φ m [ L , M ] = LM − ML • Remark: Lax equation for integrable systems ∂ t L + [ L , M ] = 0 15

  16. COLLOQUE EDP-NORMANDIE CAEN 2013 Lax pair in a nutshell • Example: Korteweg de Vries equation: ∂ t u + 6 u ∂ x u + ∂ 3 x u = 0 • Lax pair: L ( u ) v = − ∂ 2 x v − uv M ( u ) v = 4 ∂ 3 x v + 6 u ∂ x v + 3 v ∂ x u u 0 ( x ) = κ 2 • Example: 1-soliton: if 2 φ 2 1 1 ( κ 1 x ) u ( x, t ) = κ 2 2 φ 2 1 1 ( κ 1 ( x − κ 2 1 t )) then: with: φ 1 ( x ) = sech(x) 16

  17. COLLOQUE EDP-NORMANDIE CAEN 2013 Representation in the reduced basis • Approximation of the solution: N M X β m φ m u ≈ ˜ u = m =1 N M F ( u ) ≈ ˜ X F ( u ) = γ m φ m m =1 • Matrix representation of the operators: M ij = h M φ j , φ i i Λ ij = h L φ j , φ i i = diag { λ i } Θ ij = h ˜ F ( u ) φ j , φ i i 17

  18. COLLOQUE EDP-NORMANDIE CAEN 2013 Representation of the PDE N M N M ˜ X X F ( u ) = β m φ m γ m φ m u = ˜ m =1 m =1 M φ m X ˙ X ∂ t u = F ( u ) = β m φ m + β m ∂ t φ m = γ m φ m ⇒ ˙ β + M β = γ = ⇒ 18

  19. COLLOQUE EDP-NORMANDIE CAEN 2013 Representation of the “Lax equation” − χ∂ t u = − χ F ( u ) ( ∂ t L + LM − ML ) φ m = ∂ t λ m φ m ˙ λ m = − χ Θ mm d Λ dt + χ Θ = Λ M − M Λ χ M mp ( u ) = Θ mp λ p − λ m ( with Θ ij = h ˜ F ( u ) φ j , φ i i ) if p 6 = m and λ p 6 = λ m ( otherwise M mp = 0) 19

  20. COLLOQUE EDP-NORMANDIE CAEN 2013 Representation of the “multiplication by F(u)” T ijk { N M Θ ij = h ˜ X F ( u ) φ j , φ i i = γ k h φ k φ j , φ i i k =1 ˙ T ijk = h ∂ t φ k φ j , φ i i + h φ k ∂ t φ j , φ i i + h φ k φ j , ∂ t φ i i N M T ijk = { M, T } (3) X ˙ Θ ij = γ k T ijk ijk k =1 { M, T } (3) X ijk = ( M li T ljk + M lj T ilk + M lk T ijl ) 20

  21. COLLOQUE EDP-NORMANDIE CAEN 2013 Summary Full Order Space Reduced Order Space β m u F ( u ) γ m L χ ( u ) Λ = diag( λ m ) M ( u ) M mp F ( u ) · Θ mp d Λ ( ∂ t L χ + [ L , M ]) ϕ m = ∂ t λ m ϕ m dt + χ Θ = Λ M − M Λ ˙ ∂ t u = F ( u ) β + M β = γ 21

  22. COLLOQUE EDP-NORMANDIE CAEN 2013 Summary • Generic relations between β , γ , T , M , λ , θ ˙ ( i ) β + M β = γ N M X ( ii ) = Θ ij γ k T ijk k =1 ˙ ( iii ) = λ m − χ Θ mm χ ( iv ) M mp ( u ) = Θ mp λ p − λ m { M, T } (3) ˙ ( v ) = T ijk ijk • A relation between β and γ has to be derived for the specific PDE 22

  23. COLLOQUE EDP-NORMANDIE CAEN 2013 Example : Fisher-Kolmogorov • The Fisher-Kolmogorov equation: ∂ u ∂ t − ∆ u = ν u (1 − u ) • Using the approximation of u : N M N M N M ( ˙ X X X β j φ j + β j ∂ t φ j − β j ∆ φ j ) = ν β j φ j − ν β j β k φ i φ k j =1 j =1 j,k =1 • Hence, the relation between β and γ : N M X ( vi ) γ i = ( ν − λ i ) β i − ( ν + χ ) T ijk β j β k j,k =1 23

  24. COLLOQUE EDP-NORMANDIE CAEN 2013 Example 1 : FKPP ∂ u  t=0 = ∆ u + ν u (1 − u ) in Ω ,   ∂ t    ∂ u = 0 on ∂ Ω , ∂ n    e − 50(( x − 0 . 5) 2 +( y − 0 . 25) 2 )  u 0 ( x, y ) =  24

  25. COLLOQUE EDP-NORMANDIE CAEN 2013 Example 1 : FKPP ALP ( 40 modes) FEM ( 5700 DOF) 25

  26. COLLOQUE EDP-NORMANDIE CAEN 2013 Z T k u � u ALP ) k 2 L 2 = 1 L 2 ε 2 dt k u k 2 T 0 L 2 ε T = k u ( T ) � u ALP ( T ) k L 2 k u ( T ) k L 2 26

  27. COLLOQUE EDP-NORMANDIE CAEN 2013 Example 1 : FKPP 11350 vertices 27

  28. COLLOQUE EDP-NORMANDIE CAEN 2013 Example 1 : FKPP FEM (11350 dofs) ALP (30 modes) 28

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend