simple exclusion process
play

Simple Exclusion Process conditioned on extreme flux V. Popkov - PowerPoint PPT Presentation

Effective Dynamics of Asymmetric Simple Exclusion Process conditioned on extreme flux V. Popkov Universit di Salerno, Italy with G. Schtz , D. Simon MPI, Drezden, July 2011 Plan Introduction TASEP on a ring as an integrable model


  1. Effective Dynamics of Asymmetric Simple Exclusion Process conditioned on extreme flux V. Popkov Università di Salerno, Italy with G. Schütz , D. Simon MPI, Drezden, July 2011

  2. Plan • Introduction • TASEP on a ring as an integrable model • Large deviations • Modified rate matrix: eigenvalues and maximal eigenvector • Effective dynamics and conditional probabilities • Connection to quantum free fermion problem • Connection to Dyson ´ s Circular Unitary Ensemble

  3. Introduction j j 0 Extremely rare event τ 0 t ( ) F j Large deviation function Q t exp ( ) P j F j t j j 0 Our goal: to investigate typical dynamics inside the interval , where extreme event happened

  4. ASEP on a ring sites, particles L N P C Master Equation W P W P ' ' '' C C C C C C t ' '' C C C 1 Equiprobable stationary state P C L N Counting jumps across a bond up to time t / t N N ( ) ( ) 1 J t J t J t t k stat L L 0 k ( ) are correlated random variables (not i.i.d.) J t k

  5. ASEP – reference model of stochastic many-body systems • Solvable by Bethe Ansatz : spectrum, finite size scaling, universality • Conditional probabilities can be found exactly in determinantal form; connections to random matrices ensembles • Minimal model for traffic processes • A base for traffic applications for pedestrian dynamics, vehicle dynamics, growth processes • Biological applications (RNA synthesis) • ASEP with open boundaries – reference model for boundary driven phase transitions • A simplest example of exclusion processes

  6. Applications of ASEP and its generalizations I. Protein synthesis RNA β Ribosome protein J.T. MacDonald, J.H. Gibbs, and A.C. Pipkin, Biopolymers 6 , 1 (1968). 2. Vehicular traffic (Nagel-Schreckenberg model) α Off-ramp β

  7. Generating function for the flux ( ) ( ) sJ t sJ s t ( , , | ) e e e P C J t C P 0 C 0 C C J 0 By steepest descent can be shown to reduce to maximal eigenvalue problem s ( ) eigen value equation for Modified Rate Matrix s Y e W Y W Y ' ' '' C C C C C C C ' '' C C C j ( ) , W s C Y S 1 1 1 C j ( ) Left eigenvector W s 0 1 1 S '( ) ; '(0) s j j 0 0 s

  8. ASEP conditioned on reduced flux (s<0) B. Derrida and C. Appert, J. Stat. Phys 94 , 1 (1999) 1) Found analytically ( ) for 0 and arbitrary particle density s s 2) Showed that major contribution is given by TASEP configurations with a single shock-antishock structure Typical Density profile if conditioned on reduced flux Usual homogeneous density profile Stable shock unstable shock What are typical configurations and particle dynamics for large atypical fluxes (s>0) ??

  9. Effective particle dynamics of a TASEP particles conditioned on high flux j j 0 Extremely rare event τ 0 t Particles should (1) move faster (2) formation of jams should be suppressed Quantifying the problem : ( ) , W s 1 1 S EFFECTIVE DYNAMICS ( D. Simon, J. Stat. Mech. 20 09 ) ' C 1 Eff S Effective rates W e W C C ' ' C C C 1 Eff Stationary state ( ) P C C C 1 1

  10. 1 particle 1 S j e 1 1 j W 0 1 1 0 s S 1 1 e S ; ; 1 1 ; ( ) 1 W s e 1 1 S S 1 1 e S '( ) j s e ' C 1 eff S S . ( , ') eff rates W C C e W e ' C C C 1 eff Stationary probabilities ( ) 1/ 2 P C C C 1 1

  11. 3 particles, restricted on high flux 1  n 1  n 2  n 3  L   n 3 | n 1 n 2 n 3   n 1 z   2  n 2 z   3  |  1   A  z   1    n 3  A 213 z 2 n 3  ...  | n 1 n 2 n 3   A 123 z 1 n 1 z 2 n 2 z 3 n 1 z 1 n 2 z 3 1  n 1  n 2  n 3  L z k  exp i  2  k  2  1  3 e  S , k  1,2,3 L L   1  z j e  S A   ij  k 1  z i e  S A ijk Limit of large flux e S L  1 Y 123   C |  1     1 | C   sin   n 2  n 1  sin   n 3  n 2  sin   n 3  n 1   O  e  s  L L L   s   e s  N  1  N  e s 3 1  36   O  1   O  e  s  z k 24 L 2 k  1

  12. 3 particles, restricted on high flux 6 2 2 eff ( , , ) P n n n Y 1 2 3 123 3 L eff log( ) U P eff n n j k 2 logsin U eff L j k , Long distance pair particle potential 2 6 2 n n n n n n 2 1 3 2 3 1 EFF 2 s ( ) sin sin sin ( ) P Y O e n , n , n 123 3 1 2 3 L L L L Cluster of two particles Single cluster state Most probable state 8 6 2 6 2 2 L 1 2 24 EFF LP 4 eff EFF sin . P L P x n 1, n 2, n 3 8 2 1, 2, n n n 2 2 3 6 1 2 3 L 1 2 3 2 9 L L L L L 4 EFF 6 n P sin 3 /3, 2 /3, L L L 3 2 3 3 3 1 L L 1 L 6 6 L TASEP 1 TASEP P L ( 4) P L L L 2 L 2 TASEP 3 L P L 3 2 3 3 L

  13. 3 particles, restricted on high flux Effective hopping rates ( 1) ( 1) l l 1 2 sin sin L L s s eff ( ) . W e O e l 1, l 1, l l l l | l l 1 2 3 1 2 3 1 2 sin sin L L Effective hopping rates for particles at short distances d L d eff s , 1, 2,... W e d .. ..,.. 1.. d d 1 d 1 , d eff s 1, 2,.. W e d .. d 1..,.. .. d d Pair of particles at short distances tend to increase the d istance W W 1 1 d d d d

  14. N particles, conditioned on infinite flux n n n ... | ... | ... A z z z n n n Y n n n 1 2 N 1 (1) (2) ( ) 1 2 12.. 1 2 N N N N 1 1 1 1 n n n L S n n n L 2 3 N 2 3 S in the limit of e ( ) ( ) ( ) n n n sgn( ) ... Y z z z 1 2 N 12.. 1 2 N s N 1 e S N n n n ... z z z 1 2 N 1 1 1 n n n ... z z z 1 2 N 2 2 2 det Y 12.. N e s 1 . .. ... ... ... n n n ... z z z 1 2 N N N N 1 2( N ) k 2 exp( ), where , 1, 2,... z i k N k k k L n n k p sin , Y 12... N L 1 p k N

  15. N particles, conditioned on infinite flux n n k p sin , Y 12... P eff  C    Y 12... N  2 / K N N L 1 p k N m n N N ( 1) N 2 2 sin K L , N L L 1 n m L L max is reached for equdistant configuration | | for all Y n n k 12... 1 N k k N Effective Potential ( , ,..., ) log | sin ( ) |. U x x x x x 1 2 N i j i j Probability of most probable state at half-filling N=L/2 L 1 eff (..0101..) 2 / 2 P K K 2 /2, /2 /2, L L L L L equidist L (..0101..) 2/ 2 P TASEP L /2 eff equidist (..0101..) (..0101..) P P TASEP

  16. N particles, conditioned on infinite flux Probability of most probable state at fillings , 1/2, 1/3, 1/4, …. 1 1 , ,... particle density F 2 3 1 ln eff L Lv ( ) /( ) P K K e F F F F L , L F L , L F F F F 1 L L v ln (1 v )ln(1 ) 1 equidist (100...100...1 00..) P e F F F F TASEP F 1/ L F F equidist (100...100...1 00..) P TASEP 1/ L (1 v )ln(1 ) F e F F ef f ( ) P F

  17. Clustering probabilities d Suppose, in an infinite system we have a sparse finite size cluster of particle with distances ; N d ij Probability to observe a cluster of half-size / 2 d 2 ij sin ( / 2) P d L cluster of size 1 eff i j N ( 1) N N 2 d ( ) P d similar cluster of si ze 2 ij d/2 eff sin L 1 i j N ( / 2) P d cluster of size ideal gas N For ideal gas 2 ( ) P d similar cluster of size ideal gas

  18. Connection to Free Fermions L H XX 0 n n 1 n 1 n n 1 Wave function for N fermions on a ring of L sites is given by ikn Slater determinant, constructed from single-particle wave functions e n n n ... z z z 1 2 N 1 1 1 n n n ... z z z 1 2 N L 2 2 2 imL det , where 1 z e 0 m ... ... ... ... n n n ... z z z 1 2 N N N N 3 n n 2 k p Ground state | ... , where sin Y n n n Y 0 12.. 1 2 12... N N N 3/2 L L 1 n n ... n L 1 p k N 1 2 N 2 Quantum Expectation values of a configuration ( ) P C C 0 Stochastic Classical TASEP conditioned on large flux 2 2 EFF , conditioned probabilities of a configuration ( ) P C C C 1 0 1 0 L S ( ) (1 ) H s e n n TASEP m m 1 m m 1 1 m ( ), 0 H s H TASEP XX 0

  19. Using connection to Free Fermions Pair correlation function is given by Quantum Expectation value n n k k m 2 1 1 sin m FF z z 2 eff (1 )(1 ) n n k k m k k m 2 2 4 m 2 ASEP Note: for ASEP = n n k k m Conditional probability ( , ; ,0) P t 0 FF H t is given by the respective Quantum Expectation valu e e XX 0 0 in imaginary t i m e eff Time dependent correlation functi on ( ) (0) n t n k m k is given by the respective Quantum FF Expectation value in imaginary time V.P., G.M. Schütz, J. Stat. Phys. 142 , 627 (2011)

  20. Connection to Circular Unitary Ensemble Random unitary matrices , eigenvalues exp( ) U i k k Dyson 1962 Joint Probability distribution of the ei genvalues in CUE 2 k j Prob( , ,..., ) sin 1 2 N 2 k j Compare to steady state probabilities of configu r a tions in effective ASEP dynamic s n n k p 2 ( , ,... , ) s in , P n n n 1 2 eff N L 1 p k N

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend