silver sintering for power electronics integration
play

Silver Sintering for Power Electronics Integration Cyril B UTTAY , - PowerPoint PPT Presentation

Silver Sintering for Power Electronics Integration Cyril B UTTAY , Bruno A LLARD , Raphal R IVA Laboratoire Ampre, Lyon, France 17/4/15 1 / 25 Outline Introduction Integration of gate driver circuit Double-side Cooling Conclusion 2 /


  1. Silver Sintering for Power Electronics Integration Cyril B UTTAY , Bruno A LLARD , Raphaël R IVA Laboratoire Ampère, Lyon, France 17/4/15 1 / 25

  2. Outline Introduction Integration of gate driver circuit Double-side Cooling Conclusion 2 / 25

  3. Outline Introduction Integration of gate driver circuit Double-side Cooling Conclusion 3 / 25

  4. Active Power Devices for High Temperature Falahi et Al. “High temperature, Smart Power Module for aircraft actuators”, HiTEN 2013 250 -50 ◦ C -10 ◦ C 27 ◦ C 70 ◦ C 107 ◦ C 70 310°C 200 60 160 ◦ C 150 50 Drain current [A] 196 ◦ C V out [V] 40 100 234 ◦ C 270 ◦ C 30 50 20 0 10 50 0 49.0 48.8 48.6 48.4 0.2 0.0 0.2 0 2 4 6 8 10 12 time [ µ s] time [ µ s] Drain-to-Source voltage [V] Previous results show that SiC JFETs are attractive for > 200 ° C operation: ◮ rated at 1200 V (or more), several Amps ◮ Voltage-controlled devices ◮ No reliability issue related to gate oxide degradation 4 / 25

  5. Gate Drivers for SiC JFETs 120 100 Drain Current [A] 80 ◮ Normally-on devices 60 ◮ negative blocking Vgs = 0.0 V voltage Vgs = 5.0 V 40 Vgs = 10.0 V ◮ threshold ≈ 20 V. Vgs = 15.0 V 20 Vgs = 20.0 V Vgs = 25.0 V 0 0 5 10 15 20 Drain-to-Source Voltage [V] ◮ Custom-designed gate driver ◮ SOI technology for high temperature capability. 5 / 25

  6. Bonding Material: Silver Sintering Silver Paste ◮ Based on micro-scale silver particles (Heraeus LTS-117O2P2) ◮ Low temperature (240 ° C) sintering Göbl, C. et al “Low temperature sinter technology Die attachment for automotive ◮ Low pressure (2 MPa) process power electronic applications” proc of APE, 2006 No liquid phase involved: ◮ No movement of the die ◮ No bridging across terminals ◮ No height compensation thanks to wetting 6 / 25

  7. Outline Introduction Integration of gate driver circuit Double-side Cooling Conclusion 7 / 25

  8. What’s Inside and What’s Not? High-side gate driver V bus Dead-time Buffer Level-shifter Dead-time Buffer OUT Low-side gate driver Dead-time Buffer Level-shifter Dead-time Buffer GND 8 / 25

  9. What’s Inside and What’s Not? High-side gate driver DC V bus DC Dead-time Buffer DC DC Level-shifter Dead-time Buffer DC OUT DC PWM generator Low-side gate driver DC DC Dead-time Buffer DC DC Level-shifter Dead-time Buffer DC DC GND ◮ Isolation functions (signal and power) ◮ PWM signal generation ◮ Large value decoupling capacitor (1 µ F ) 8 / 25

  10. Pictures of the power module ◮ CuMo leadframe / NiFe frame case ◮ ceramic substrate (AlN) ≈ 20 × 30 mm 2 ◮ high temperature passives (Vishay, Presidio) ◮ Al wedge Wirebonds, except Au ball for driver ◮ Bonding: silver sintering 9 / 25

  11. The Test Setup No encapsulation used ➜ V DC limited to 200 V Power module attached to a hotplate ➜ test from ambient to 315° C External components at room temp. ➜ signal and power isolation ➜ large DC capacitor Continuous operation on resistor 10 / 25

  12. Measurements 250 200°C 200 V bus 150 V out [V] J H 100 50 OUT 0 50 49.0 48.8 48.6 48.4 0.2 0.0 0.2 time [ µ s] time [ µ s] J L 5 GND 200°C 4 3 ◮ V DC = 200 V (no I out [A] 2 encapsulation) 1 ◮ R load = 50 Ω 0 ◮ F switch = 10 kHz 1 ◮ t dead − time = 1 . 2 µ s 49.0 48.8 48.6 48.4 0.2 0.0 0.2 time [ µ s] time [ µ s] 11 / 25

  13. Measurements 250 210°C 200 V bus 150 V out [V] J H 100 50 OUT 0 50 49.0 48.8 48.6 48.4 0.2 0.0 0.2 time [ µ s] time [ µ s] J L 5 GND 210°C 4 3 ◮ V DC = 200 V (no I out [A] 2 encapsulation) 1 ◮ R load = 50 Ω 0 ◮ F switch = 10 kHz 1 ◮ t dead − time = 1 . 2 µ s 49.0 48.8 48.6 48.4 0.2 0.0 0.2 time [ µ s] time [ µ s] 11 / 25

  14. Measurements 250 220°C 200 V bus 150 V out [V] J H 100 50 OUT 0 50 49.0 48.8 48.6 48.4 0.2 0.0 0.2 time [ µ s] time [ µ s] J L 5 GND 220°C 4 3 ◮ V DC = 200 V (no I out [A] 2 encapsulation) 1 ◮ R load = 50 Ω 0 ◮ F switch = 10 kHz 1 ◮ t dead − time = 1 . 2 µ s 49.0 48.8 48.6 48.4 0.2 0.0 0.2 time [ µ s] time [ µ s] 11 / 25

  15. Measurements 250 230°C 200 V bus 150 V out [V] J H 100 50 OUT 0 50 49.0 48.8 48.6 48.4 0.2 0.0 0.2 time [ µ s] time [ µ s] J L 5 GND 230°C 4 3 ◮ V DC = 200 V (no I out [A] 2 encapsulation) 1 ◮ R load = 50 Ω 0 ◮ F switch = 10 kHz 1 ◮ t dead − time = 1 . 2 µ s 49.0 48.8 48.6 48.4 0.2 0.0 0.2 time [ µ s] time [ µ s] 11 / 25

  16. Measurements 250 240°C 200 V bus 150 V out [V] J H 100 50 OUT 0 50 49.0 48.8 48.6 48.4 0.2 0.0 0.2 time [ µ s] time [ µ s] J L 5 GND 240°C 4 3 ◮ V DC = 200 V (no I out [A] 2 encapsulation) 1 ◮ R load = 50 Ω 0 ◮ F switch = 10 kHz 1 ◮ t dead − time = 1 . 2 µ s 49.0 48.8 48.6 48.4 0.2 0.0 0.2 time [ µ s] time [ µ s] 11 / 25

  17. Measurements 250 250°C 200 V bus 150 V out [V] J H 100 50 OUT 0 50 49.0 48.8 48.6 48.4 0.2 0.0 0.2 time [ µ s] time [ µ s] J L 5 GND 250°C 4 3 ◮ V DC = 200 V (no I out [A] 2 encapsulation) 1 ◮ R load = 50 Ω 0 ◮ F switch = 10 kHz 1 ◮ t dead − time = 1 . 2 µ s 49.0 48.8 48.6 48.4 0.2 0.0 0.2 time [ µ s] time [ µ s] 11 / 25

  18. Measurements 250 260°C 200 V bus 150 V out [V] J H 100 50 OUT 0 50 49.0 48.8 48.6 48.4 0.2 0.0 0.2 time [ µ s] time [ µ s] J L 5 GND 260°C 4 3 ◮ V DC = 200 V (no I out [A] 2 encapsulation) 1 ◮ R load = 50 Ω 0 ◮ F switch = 10 kHz 1 ◮ t dead − time = 1 . 2 µ s 49.0 48.8 48.6 48.4 0.2 0.0 0.2 time [ µ s] time [ µ s] 11 / 25

  19. Measurements 250 270°C 200 V bus 150 V out [V] J H 100 50 OUT 0 50 49.0 48.8 48.6 48.4 0.2 0.0 0.2 time [ µ s] time [ µ s] J L 5 GND 270°C 4 3 ◮ V DC = 200 V (no I out [A] 2 encapsulation) 1 ◮ R load = 50 Ω 0 ◮ F switch = 10 kHz 1 ◮ t dead − time = 1 . 2 µ s 49.0 48.8 48.6 48.4 0.2 0.0 0.2 time [ µ s] time [ µ s] 11 / 25

  20. Measurements 250 280°C 200 V bus 150 V out [V] J H 100 50 OUT 0 50 49.0 48.8 48.6 48.4 0.2 0.0 0.2 time [ µ s] time [ µ s] J L 5 GND 280°C 4 3 ◮ V DC = 200 V (no I out [A] 2 encapsulation) 1 ◮ R load = 50 Ω 0 ◮ F switch = 10 kHz 1 ◮ t dead − time = 1 . 2 µ s 49.0 48.8 48.6 48.4 0.2 0.0 0.2 time [ µ s] time [ µ s] 11 / 25

  21. Measurements 250 290°C 200 V bus 150 V out [V] J H 100 50 OUT 0 50 49.0 48.8 48.6 48.4 0.2 0.0 0.2 time [ µ s] time [ µ s] J L 5 GND 290°C 4 3 ◮ V DC = 200 V (no I out [A] 2 encapsulation) 1 ◮ R load = 50 Ω 0 ◮ F switch = 10 kHz 1 ◮ t dead − time = 1 . 2 µ s 49.0 48.8 48.6 48.4 0.2 0.0 0.2 time [ µ s] time [ µ s] 11 / 25

  22. Measurements 250 300°C 200 V bus 150 V out [V] J H 100 50 OUT 0 50 49.0 48.8 48.6 48.4 0.2 0.0 0.2 time [ µ s] time [ µ s] J L 5 GND 300°C 4 3 ◮ V DC = 200 V (no I out [A] 2 encapsulation) 1 ◮ R load = 50 Ω 0 ◮ F switch = 10 kHz 1 ◮ t dead − time = 1 . 2 µ s 49.0 48.8 48.6 48.4 0.2 0.0 0.2 time [ µ s] time [ µ s] 11 / 25

  23. Measurements 250 310°C 200 V bus 150 V out [V] J H 100 50 OUT 0 50 49.0 48.8 48.6 48.4 0.2 0.0 0.2 time [ µ s] time [ µ s] J L 5 GND 310°C 4 3 ◮ V DC = 200 V (no I out [A] 2 encapsulation) 1 ◮ R load = 50 Ω 0 ◮ F switch = 10 kHz 1 ◮ t dead − time = 1 . 2 µ s 49.0 48.8 48.6 48.4 0.2 0.0 0.2 time [ µ s] time [ µ s] 11 / 25

  24. Outline Introduction Integration of gate driver circuit Double-side Cooling Conclusion 12 / 25

  25. Double Side Cooling ◮ Standard packaging offers cooling through one side of the die only ◮ “3-D” or “Sandwich” package performs thermal management on both sides ◮ Requires suitable topside metal on the die ◮ Requires special features for topside contact 13 / 25

  26. Double Side Cooling ◮ Standard packaging offers cooling through one side of the die only ◮ “3-D” or “Sandwich” package performs thermal management on both sides ◮ Requires suitable topside metal on the die ◮ Requires special features for topside contact 13 / 25

  27. The proposed 3-D Structure V bus J H OUT J L GND ◮ Two ceramic substrates, in “sandwich” configuration ◮ Two SiC JFET dies (SiCED) ◮ assembled using silver sintering ◮ 25.4 mm × 12.7 mm (1 in × 0.5 in) 14 / 25

  28. Ceramic Substrates Copper Alumina ◮ Si 3 N 4 identified previously for 0.16 mm high temperature 0.15 mm 0,15 mm Source Gate Source 0,3 mm ◮ For development: use of 0.2 mm alumina SiC JFET ◮ Etching accuracy exceeds 0.3 mm Drain standard design rules ◮ Double-step copper etching for die contact ➜ Custom etching technique Scale drawing for 2.4 × 2.4 mm 2 die 15 / 25

  29. Preparation of the Substrates plain DBC board 16 / 25

  30. Preparation of the Substrates plain DBC board 1a - Photosensitive resin coating 16 / 25

  31. Preparation of the Substrates plain DBC board 1a - Photosensitive resin 1b - Exposure and coating Development 16 / 25

  32. Preparation of the Substrates plain DBC board 1a - Photosensitive resin 1b - Exposure and 2 - Etching coating Development 16 / 25

  33. Preparation of the Substrates plain DBC board 1a - Photosensitive resin 1b - Exposure and 2 - Etching coating Development 16 / 25

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend