shape optimization of a coupled thermal fluid structure
play

Shape optimization of a coupled thermal fluid-structure problem in a - PowerPoint PPT Presentation

Shape optimization of a coupled thermal fluid-structure problem in a level set mesh evolution framework Florian Feppon Gr egoire Allaire, Charles Dapogny Julien Cortial, Felipe Bordeu ECCM June 12, 2018 Outline 1. Hadamards


  1. Shape optimization of a coupled thermal fluid-structure problem in a level set mesh evolution framework Florian Feppon Gr´ egoire Allaire, Charles Dapogny Julien Cortial, Felipe Bordeu ECCM – June 12, 2018

  2. Outline 1. Hadamard’s boundary variation method for a simplified three-physics setting 2. Numerical implementation of various test cases with a mesh evolution algorithm

  3. ✈ ✉ ✉ ❢ ✉ ♥ ✈ ♥ Simplified weakly coupled three-physics setting Ω f ∂ Ω D v 0 f min Γ J (Γ , ✈ (Γ) , p (Γ) , T (Γ) , ✉ (Γ)) . Ω s n Γ u 0 ∂ Ω D s ◮ Incompressible Navier-Stokes equations for ( ✈ , p ) in Ω f − div ( σ f ( ✈ , p )) + ρ ∇ ✈ ✈ = ❢ f in Ω f

  4. ✉ ✉ ❢ ✉ ♥ ✈ ♥ Simplified weakly coupled three-physics setting Ω f ∂ Ω D v 0 f min Γ J (Γ , ✈ (Γ) , p (Γ) , T (Γ) , ✉ (Γ)) . Ω s n Γ u 0 ∂ Ω D s ◮ Incompressible Navier-Stokes equations for ( ✈ , p ) in Ω f − div ( σ f ( ✈ , p )) + ρ ∇ ✈ ✈ = ❢ f in Ω f ◮ Steady-state convection-diffusion for T f and T s in Ω f and Ω s : − div ( k f ∇ T f ) + ρ ✈ · ∇ T f = Q f in Ω f − div ( k s ∇ T s ) = Q s in Ω s

  5. Simplified weakly coupled three-physics setting Ω f ∂ Ω D v 0 f min Γ J (Γ , ✈ (Γ) , p (Γ) , T (Γ) , ✉ (Γ)) . Ω s n Γ u 0 ∂ Ω D s ◮ Incompressible Navier-Stokes equations for ( ✈ , p ) in Ω f − div ( σ f ( ✈ , p )) + ρ ∇ ✈ ✈ = ❢ f in Ω f ◮ Steady-state convection-diffusion for T f and T s in Ω f and Ω s : − div ( k f ∇ T f ) + ρ ✈ · ∇ T f = Q f in Ω f − div ( k s ∇ T s ) = Q s in Ω s ◮ Linearized thermoelasticity with fluid-structure interaction for ✉ in Ω s : − div ( σ s ( ✉ , T s )) = ❢ s in Ω s σ s ( ✉ , T s ) · ♥ = σ f ( ✈ , p ) · ♥ on Γ .

  6. Hadamard’s method of boundary variations Ω s Ω f θ Γ θ min J (Γ) Γ Γ Γ θ = ( I + θ )Γ , where θ ∈ W 1 , ∞ (Ω , R d ) , || θ || W 1 , ∞ ( R d , R d ) < 1 . 0 | o ( θ ) | J (Γ θ ) = J (Γ) + d J θ → 0 d θ ( θ ) + o ( θ ) , where − − − → 0 , || θ || W 1 , ∞ (Ω , R d )

  7. ♥ Hadamard’s method of boundary variations Ω s Ω f θ Γ θ min J (Γ) Γ Γ A descent direction θ ∈ H 1 ( D ) is obtained by solving an identification problem ∀ θ ′ ∈ H 1 ( D ) , a ( θ , θ ′ ) = d J d θ ( θ ′ ) .

  8. Hadamard’s method of boundary variations Ω s Ω f θ Γ θ min J (Γ) Γ Γ A descent direction θ ∈ H 1 ( D ) is obtained by solving an identification problem ∀ θ ′ ∈ H 1 ( D ) , a ( θ , θ ′ ) = d J d θ ( θ ′ ) . Hadamard’s structure theorem: if Γ, θ , and J are smooth enough, then there exists v ∈ L 1 (Γ) such that d J � d θ ( θ ) = v θ · ♥ d s Γ

  9. ✇ r ✈ ✉ ❢ ✇ ✈ ✇ ♥ ✇ ✈ ♥ ♥ ✈ ✇ ♥ ♥ ♥ ✉ r ❢ r ♥ r ✉ ♥ ♥ ✉ r ♥ ♥ Analytical shape derivative calculations Outcomes: ◮ We propose a “pedestrian” method to compute shape derivatives in volumetric or surfacic form of general objective functionals in terms of its partial derivatives.

  10. ✇ r Analytical shape derivative calculations Outcomes: ◮ We propose a “pedestrian” method to compute shape derivatives in volumetric or surfacic form of general objective functionals in terms of its partial derivatives. d � � J (Γ θ , ✈ (Γ θ ) , p (Γ θ ) , T (Γ θ ) , ✉ (Γ θ )) ( θ ) d θ = ∂ J � ∂ θ ( θ ) + ( ❢ f · ✇ − σ f ( ✈ , p ) : ∇ ✇ + ♥ · σ f ( ✇ , q ) ∇ ✈ · ♥ + ♥ · σ f ( ✈ , p ) ∇ ✇ · ♥ )( θ · ♥ ) d s Γ � � ∂ T s ∂ S s ∂ T f ∂ S f � + k s ∇ T s · ∇ S s − k f ∇ T f · ∇ S f + Q f S f − Q s S s − 2 k s ∂ n + 2 k f ( θ · ♥ ) d s ∂ n ∂ n ∂ n Γ � + ( σ s ( ✉ , T s ) : ∇ r − ❢ s · r − ♥ · Ae ( r ) ∇ ✉ · ♥ − ♥ · σ s ( ✉ , T s ) ∇ r · ♥ ) ( θ · ♥ ) d s Γ

  11. Analytical shape derivative calculations Outcomes: ◮ We propose a “pedestrian” method to compute shape derivatives in volumetric or surfacic form of general objective functionals in terms of its partial derivatives. ◮ Adjoint variables ✇ , q , S f , S s , r are solved in a reversed cascade. d � � J (Γ θ , ✈ (Γ θ ) , p (Γ θ ) , T (Γ θ ) , ✉ (Γ θ )) ( θ ) d θ = ∂ J � ∂ θ ( θ ) + ( ❢ f · ✇ − σ f ( ✈ , p ) : ∇ ✇ + ♥ · σ f ( ✇ , q ) ∇ ✈ · ♥ + ♥ · σ f ( ✈ , p ) ∇ ✇ · ♥ )( θ · ♥ ) d s Γ � � ∂ T s ∂ S s ∂ T f ∂ S f � + k s ∇ T s · ∇ S s − k f ∇ T f · ∇ S f + Q f S f − Q s S s − 2 k s ∂ n + 2 k f ( θ · ♥ ) d s ∂ n ∂ n ∂ n Γ � + ( σ s ( ✉ , T s ) : ∇ r − ❢ s · r − ♥ · Ae ( r ) ∇ ✉ · ♥ − ♥ · σ s ( ✉ , T s ) ∇ r · ♥ ) ( θ · ♥ ) d s Γ

  12. ① ✈ ① r ① ✇ r ✇ ✈ ✇ ✇ ✇ ✇ ✈ ✇ ✈ ✇ ✇ ① ✇ ① ✇ ✈ ✇ r ✉ ♥ ✈ ♥ Adjoint system � Ae ( r ) : ∇ r ′ d ① = ∂ J ∀ r ′ ∈ V ✉ (Γ) . ✉ ( r ′ ) ∂ ˆ Ω s

  13. ✇ r ✇ ✈ ✇ ✇ ✇ ✇ ✈ ✇ ✈ ✇ ✇ ① ✇ ① ✇ ✈ ✇ r ✉ ♥ ✈ ♥ Adjoint system � Ae ( r ) : ∇ r ′ d ① = ∂ J ∀ r ′ ∈ V ✉ (Γ) . ✉ ( r ′ ) ∂ ˆ Ω s � � � α div ( r ) S ′ d ① + ∂ J ∀ S ′ ∈ V T (Γ) . k s ∇ S ·∇ S ′ d ① + ( k f ∇ S ·∇ S ′ + ρ c p S ✈ ·∇ S ′ ) d ① = ( S ) ∂ ˆ T Ω s Ω f Ω s

  14. ✇ r ✉ ♥ ✈ ♥ Adjoint system � Ae ( r ) : ∇ r ′ d ① = ∂ J ∀ r ′ ∈ V ✉ (Γ) . ✉ ( r ′ ) ∂ ˆ Ω s � � � α div ( r ) S ′ d ① + ∂ J ∀ S ′ ∈ V T (Γ) . k s ∇ S ·∇ S ′ d ① + ( k f ∇ S ·∇ S ′ + ρ c p S ✈ ·∇ S ′ ) d ① = ( S ) ∂ ˆ T Ω s Ω f Ω s ✇ = r on Γ and ∀ ( ✇ ′ , q ′ ) ∈ V ✈ , p (Γ) � � σ f ( ✇ , q ) : ∇ ✇ ′ + ρ ✇ · ∇ ✇ ′ · ✈ + ρ ✇ · ∇ ✈ · ✇ ′ − q ′ div ( ✇ ) � d ① = Ω f � ∂ J − ρ c p S ∇ T · ✇ ′ d ① + ∂ ( ✈ ′ , p ′ ) ( ✇ ′ , q ′ ) , Ω f

  15. Adjoint system � Ae ( r ) : ∇ r ′ d ① = ∂ J ∀ r ′ ∈ V ✉ (Γ) . ✉ ( r ′ ) ∂ ˆ Ω s � � � α div ( r ) S ′ d ① + ∂ J ∀ S ′ ∈ V T (Γ) . k s ∇ S ·∇ S ′ d ① + ( k f ∇ S ·∇ S ′ + ρ c p S ✈ ·∇ S ′ ) d ① = ( S ) ∂ ˆ T Ω s Ω f Ω s ✇ = r on Γ and ∀ ( ✇ ′ , q ′ ) ∈ V ✈ , p (Γ) � � σ f ( ✇ , q ) : ∇ ✇ ′ + ρ ✇ · ∇ ✇ ′ · ✈ + ρ ✇ · ∇ ✈ · ✇ ′ − q ′ div ( ✇ ) � d ① = Ω f � ∂ J − ρ c p S ∇ T · ✇ ′ d ① + ∂ ( ✈ ′ , p ′ ) ( ✇ ′ , q ′ ) , Ω f ✇ = r on Γ : “strange” boundary condition dual to the equality of normal stresses σ s ( ✉ , T s ) · ♥ = σ f ( ✈ , p ) · ♥ on Γ.

  16. Outline 1. Hadamard’s boundary variation method for a simplified three-physics setting 2. Numerical implementation of various test cases with a mesh evolution algorithm

  17. Numerical implementation : mesh evolution algorithm We consider the algorithm proposed by Allaire, Dapogny, Frey (2013): 1. Given a mesh of Ω = Ω s ∪ Ω f and a moving vector field θ

  18. Numerical implementation : mesh evolution algorithm We consider the algorithm proposed by Allaire, Dapogny, Frey (2013): 2. A level-set function φ associated to Ω = Ω s ∪ Ω f is computed on the mesh.

  19. Numerical implementation : mesh evolution algorithm We consider the algorithm proposed by Allaire, Dapogny, Frey (2013): 3. The level-set function is avected on the computational domain which is then adaptively remeshed:

  20. Numerical implementation : mesh evolution algorithm We consider the algorithm proposed by Allaire, Dapogny, Frey (2013): 3. The level-set function is avected on the computational domain which is then adaptively remeshed: Advection of a level set for Ω on the computational mesh.

  21. Numerical implementation : mesh evolution algorithm We consider the algorithm proposed by Allaire, Dapogny, Frey (2013): 3. The level-set function is avected on the computational domain which is then adaptively remeshed: Breaking the zero isoline of the level set.

  22. Numerical implementation : mesh evolution algorithm We consider the algorithm proposed by Allaire, Dapogny, Frey (2013): 3. The level-set function is avected on the computational domain which is then adaptively remeshed: Remeshing adaptively the computational mesh.

  23. A numerical test case : shape optimization of an airfoil Maximization of the lift and minimization of the viscous forces: � � J (Γ) = − ω ❡ y · σ f ( ✈ , p ) · ♥ d s + (1 − ω ) 2 ν e ( ✈ ) : e ( ✈ ) d x ∂ Ω f Ω f

  24. A numerical test case : fluid structure interaction problem Minimization of the compliance: � J (Γ) = Ae ( ✉ ) : e ( ✉ ) d x Ω s

  25. A numerical test case : fluid structure interaction problem Minimization of the compliance: � J (Γ) = Ae ( ✉ ) : e ( ✉ ) d x Ω s

  26. A numerical test case : fluid structure interaction problem

  27. Heat transfer problem Maximization of heat transfer and minimization of viscous dissipation. � � J (Γ) = ω 2 ν e ( ✈ ) : e ( ✈ ) d x − (1 − ω ) ρ c p T f ✈ · ♥ d s ∂ Ω N Ω f f

  28. Heat transfer problem

  29. Heat transfer problem

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend