semidefinite programming bounds for codes
play

Semidefinite programming bounds for codes D. Gijswijt 1 A. Schrijver - PowerPoint PPT Presentation

Introduction Method of Schrijver Computational results Semidefinite programming bounds for codes D. Gijswijt 1 A. Schrijver 2 H. Tanaka 3 1 Department of Operations research Etvs University, Budapest (Hungary) 2 CWI, Amsterdamy (the


  1. Introduction Method of Schrijver Computational results Semidefinite programming bounds for codes D. Gijswijt 1 A. Schrijver 2 H. Tanaka 3 1 Department of Operations research Eötvös University, Budapest (Hungary) 2 CWI, Amsterdamy (the Netherlands) 3 Division of Mathematics Tohoku University, Sendai (Japan) Aussois, 2006 D. Gijswijt, A. Schrijver, H. Tanaka SDP bounds for codes

  2. Introduction Method of Schrijver Computational results Outline Introduction 1 Nonbinary codes Method of Delsarte Method of Schrijver 2 A semidefinite program Computational results 3 Tables D. Gijswijt, A. Schrijver, H. Tanaka SDP bounds for codes

  3. Introduction Nonbinary codes Method of Schrijver Method of Delsarte Computational results Hamming space Let q = { 0 , 1 , . . . , q − 1 } be an alphabet with q ≥ 3 symbols w ∈ q n is a words of length n . d ( u , v ) := |{ s | u s � = v s }| is the Hamming distance between u , v ∈ q n This makes q n into a metric space, the Hamming space H ( n , q ) . D. Gijswijt, A. Schrijver, H. Tanaka SDP bounds for codes

  4. Introduction Nonbinary codes Method of Schrijver Method of Delsarte Computational results Codes A subset C ⊆ q n is a code . with minimum distance min { d ( u , v ) | u , v ∈ C , u � = v } . A q ( n , d ) := maximum cardinality of C ⊆ q n with min. distance d . Goal: find upper bounds for A q ( n , d ) . Note: A q ( n , d ) = α ( G q ( n , d )) with vertices q n and uv edge when d ( u , v ) < d . Bad news: The graph G q ( n , d ) has exponentially many vertices Good news: The Hamming space has a large automorphism group. D. Gijswijt, A. Schrijver, H. Tanaka SDP bounds for codes

  5. Introduction Nonbinary codes Method of Schrijver Method of Delsarte Computational results Codes A subset C ⊆ q n is a code . with minimum distance min { d ( u , v ) | u , v ∈ C , u � = v } . A q ( n , d ) := maximum cardinality of C ⊆ q n with min. distance d . Goal: find upper bounds for A q ( n , d ) . Note: A q ( n , d ) = α ( G q ( n , d )) with vertices q n and uv edge when d ( u , v ) < d . Bad news: The graph G q ( n , d ) has exponentially many vertices Good news: The Hamming space has a large automorphism group. D. Gijswijt, A. Schrijver, H. Tanaka SDP bounds for codes

  6. Introduction Nonbinary codes Method of Schrijver Method of Delsarte Computational results Codes A subset C ⊆ q n is a code . with minimum distance min { d ( u , v ) | u , v ∈ C , u � = v } . A q ( n , d ) := maximum cardinality of C ⊆ q n with min. distance d . Goal: find upper bounds for A q ( n , d ) . Note: A q ( n , d ) = α ( G q ( n , d )) with vertices q n and uv edge when d ( u , v ) < d . Bad news: The graph G q ( n , d ) has exponentially many vertices Good news: The Hamming space has a large automorphism group. D. Gijswijt, A. Schrijver, H. Tanaka SDP bounds for codes

  7. Introduction Nonbinary codes Method of Schrijver Method of Delsarte Computational results Hamming Scheme We need the q n × q n 0–1 matrices A 0 , . . . , A n given by: � 1 if d ( u , v ) = k , ( A k ) u , v := 0 otherwise, for u , v ∈ q n . These matrices span a commutative algebra called the Bose–Mesner algebra of the Hamming scheme . [These are the matrices invariant under permutation of rows and columns by automorphisms] D. Gijswijt, A. Schrijver, H. Tanaka SDP bounds for codes

  8. Introduction Nonbinary codes Method of Schrijver Method of Delsarte Computational results Inner distribution The inner distribution ( x 0 , x 1 , . . . , x n ) of a code C is given by x i := ( χ C ) T A i χ C . | C | x i ≥ 0, x 0 = 1, x 1 = x 2 = . . . = x d − 1 = 0, | C | = x 0 + x 1 + . . . + x n , Delsarte constraints... � i x i K j ( i ) ≥ 0 for j = 0 , . . . , n , K j ( i ) = � j r = 0 ( − 1 ) r ( q − 1 ) j − r � i �� n − i � are Krawtchouk r j − r polynomials. D. Gijswijt, A. Schrijver, H. Tanaka SDP bounds for codes

  9. Introduction Nonbinary codes Method of Schrijver Method of Delsarte Computational results Inner distribution The inner distribution ( x 0 , x 1 , . . . , x n ) of a code C is given by x i := ( χ C ) T A i χ C . | C | x i ≥ 0, x 0 = 1, x 1 = x 2 = . . . = x d − 1 = 0, | C | = x 0 + x 1 + . . . + x n , Delsarte constraints... � i x i K j ( i ) ≥ 0 for j = 0 , . . . , n , K j ( i ) = � j r = 0 ( − 1 ) r ( q − 1 ) j − r � i �� n − i � are Krawtchouk r j − r polynomials. D. Gijswijt, A. Schrijver, H. Tanaka SDP bounds for codes

  10. Introduction Nonbinary codes Method of Schrijver Method of Delsarte Computational results Inner distribution The inner distribution ( x 0 , x 1 , . . . , x n ) of a code C is given by x i := ( χ C ) T A i χ C . | C | x i ≥ 0, x 0 = 1, x 1 = x 2 = . . . = x d − 1 = 0, | C | = x 0 + x 1 + . . . + x n , Delsarte constraints... � i x i K j ( i ) ≥ 0 for j = 0 , . . . , n , K j ( i ) = � j r = 0 ( − 1 ) r ( q − 1 ) j − r � i �� n − i � are Krawtchouk r j − r polynomials. D. Gijswijt, A. Schrijver, H. Tanaka SDP bounds for codes

  11. Introduction Nonbinary codes Method of Schrijver Method of Delsarte Computational results Inner distribution The inner distribution ( x 0 , x 1 , . . . , x n ) of a code C is given by x i := ( χ C ) T A i χ C . | C | x i ≥ 0, x 0 = 1, x 1 = x 2 = . . . = x d − 1 = 0, | C | = x 0 + x 1 + . . . + x n , Delsarte constraints... � i x i K j ( i ) ≥ 0 for j = 0 , . . . , n , K j ( i ) = � j r = 0 ( − 1 ) r ( q − 1 ) j − r � i �� n − i � are Krawtchouk r j − r polynomials. D. Gijswijt, A. Schrijver, H. Tanaka SDP bounds for codes

  12. Introduction Nonbinary codes Method of Schrijver Method of Delsarte Computational results Delsarte relations The Delsarte inequalities � x i K j ( i ) ≥ 0 , for j = 0 , . . . , n i are equivalent to x i A i · ( v i ) − 1 is positive semidefinite , � i where v i is the number of nonzero entries of A i . D. Gijswijt, A. Schrijver, H. Tanaka SDP bounds for codes

  13. Introduction Method of Schrijver A semidefinite program Computational results Triples of words Consider ordered triples of words ( u , v , w ) ∈ q n × q n × q n . := d ( u , v ) i j := d ( u , w ) # s with u s � = v s and u s � = w s t := p := # s with u s � = v s = w s . We say that d ( u , v , w ) = ( i , j , t , p ) . Observe that d ( v , w ) = i + j − t − p u , v and w all different in t − p positions � n + 4 � tuples ( i , j , t , p ) . 4 D. Gijswijt, A. Schrijver, H. Tanaka SDP bounds for codes

  14. Introduction Method of Schrijver A semidefinite program Computational results Terwilliger algebra For each tuple ( i , j , t , p ) define 0–1 matrix M t , p i , j : � 1 if d ( u , v , w ) = ( i , j , t , p ) , ( M t , p i , j ) u , v := 0 otherwise. The linear span � x t , p i , j M t , p i , j | x t , p A := { i , j ∈ C } i , j , t , p is the Terwilliger algebra . Facts: A is those matrices invariant under permutating rows and columns by symmetries fixing 0. � n + 4 � dim ( A ) = . 4 D. Gijswijt, A. Schrijver, H. Tanaka SDP bounds for codes

  15. Introduction Method of Schrijver A semidefinite program Computational results Counting triples In code C , we count triples of each type. i , j := 1 | C | #triples ( u , v , w ) ∈ C 3 with d ( u , v , w ) = ( i , j , t , p ) . x t , p Observe: x t , p i , j ≥ 0, x 0 , 0 0 , 0 = 1 x t , p i , j = 0 when { i , j , i + j − t − p } ∩ 1 , 2 , . . . , d − 1 � = ∅ i , j = x t ′ , p ′ i ′ , j ′ when t − p = t ′ − p ′ and x t , p { i , j , i + j − t − p } = { i ′ , j ′ , i ′ + j ′ − t ′ − p ′ } . x 0 , 0 0 , 0 + x 0 , 0 1 , 0 + · · · + x 0 , 0 n , 0 = | C | . other. . . D. Gijswijt, A. Schrijver, H. Tanaka SDP bounds for codes

  16. Introduction Method of Schrijver A semidefinite program Computational results Analogue of Delsarte relations Analogous to Delsarte inequalities, the matrices � x t , p i , j ( γ t , p i , j ) − 1 M t , p R ′ := i , j , i , j , t , p i + j − t − p , 0 ) − 1 − x t , p ( x 0 , 0 i + j − y − p , 0 ( γ 0 , 0 i , j ( γ t , p i , j ) − 1 ) M t , p R ′′ � := i , j , i , j , t , p are positive semidefinite. D. Gijswijt, A. Schrijver, H. Tanaka SDP bounds for codes

  17. Introduction Method of Schrijver A semidefinite program Computational results Proof ( χ σ C ) T χ σ C · #autom R ′ = � | C | · q n σ | 0 ∈ σ C ( χ σ C ) T χ σ C · #autom R ′′ = � | C | · q n σ | 0 �∈ σ C � i , j , ( χ σ C ) T χ σ C � = # ( 0 , u , v ) ∈ ( σ C ) 3 with d ( 0 , u , v ) = ( i , j , t , p ) M t , p D. Gijswijt, A. Schrijver, H. Tanaka SDP bounds for codes

  18. Introduction Method of Schrijver A semidefinite program Computational results Proof ( χ σ C ) T χ σ C · #autom R ′ = � | C | · q n σ | 0 ∈ σ C ( χ σ C ) T χ σ C · #autom R ′′ = � | C | · q n σ | 0 �∈ σ C � i , j , ( χ σ C ) T χ σ C � = # ( 0 , u , v ) ∈ ( σ C ) 3 with d ( 0 , u , v ) = ( i , j , t , p ) M t , p D. Gijswijt, A. Schrijver, H. Tanaka SDP bounds for codes

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend