semidefinite programming converse bounds for quantum
play

Semidefinite programming converse bounds for quantum communication - PowerPoint PPT Presentation

Semidefinite programming converse bounds for quantum communication arXiv:1709.00200 Kun Fang Joint work with Xin Wang, Runyao Duan Centre for Quantum Software and Information U niversity of T echnology S ydney Quantum communication A 1 B 1 A


  1. Semidefinite programming converse bounds for quantum communication arXiv:1709.00200 Kun Fang Joint work with Xin Wang, Runyao Duan Centre for Quantum Software and Information U niversity of T echnology S ydney

  2. Quantum communication A 1 B 1 A E N D B ≈ id k A B How well the simulation is? [Kretschmann, Werner, 2004] ⊚ Channel distance � D ◦ N ◦ E − id k � ♦ . ⊚ Channel fidelity F ( Φ k , D ◦ N ◦ E ( Φ k )) . , where Φ k is k -dimensional maximally entangled state. ⊚ ... Semidefinite programming converse bounds for quantum communication(1709.00200) X. Wang, K. Fang , R. Duan

  3. Quantum capacity R � Φ k Φ k A 1 B 1 ⊚ r : qubits transmitted per channel use. A N B B 2 A 2 ⊚ n : number of channel copies. N E n D n . ⊚ ε : error tolerance. . . An Bn N id k ⊚ A triplet ( r , n , ε ) is achievable if ∃ Φ k , E n and D n such that 1 � Φ k , � � n log k ≥ r , F Φ k ≥ 1 − ε. ⊚ Optimal achievable rate given n , ε r ∗ ( n , ε ) : � max { r : ( r , n , ε ) achievable } . ⊚ Quantum capacity n →∞ r ∗ ( n , ε ) . Q ( N ) : � lim ε → 0 lim Semidefinite programming converse bounds for quantum communication(1709.00200) X. Wang, K. Fang , R. Duan

  4. Theorem ( Barnum, Nielsen, Schumacher, 1996-2000; Lloyd, Shor, Devetak, 1997-2005) For any quantum channel N , it quantum capacity is equal to the regularized coherent information of the channel: � N ⊗ n � 1 Q ( N ) � lim n I c , n →∞ where I c ( N ) � max φ AA ′ I ( A � B ) N A ′→ B ( φ AA ′ ) and φ AA ′ pure state. ⊚ Not a single-letter formula. ⊚ I c ( N ) not additive in general. Semidefinite programming converse bounds for quantum communication(1709.00200) X. Wang, K. Fang , R. Duan

  5. Known converse bounds Strong converse Efficiently computable For general channels R ✓ ? (max-min) ✓ ε -DEG ? ✓ ✗ E C ✓ ? (regularization) ✓ Q E ✓ ✓ ✓ Q ss ? ? (unbounded dimension) ✓ Q Θ ✓ ✓ ✓ ⊚ R : Rains information [Tomamichel, Wilde, Winter, 2017] ⊚ ε -DEG: Epsilon degradable bound [Sutter, Scholz, Winter, Renner, 2014] ⊚ E C : Channel’s entanglement cost [Berta, Brandão, Christandl,Wehner, 2013] ⊚ Q E : Entanglement assisted quantum capacity [Bennett, Devetak, Harrow, Shor, Winter,2014; Berta, Christandl, Renner,2011] ⊚ Q ss : Quantum capacity with symmetric side channels [Smith, Smolin, Winter, 2008] ⊚ Q Θ : Partial transposition bound [Holevo,Werner, 2001] Semidefinite programming converse bounds for quantum communication(1709.00200) X. Wang, K. Fang , R. Duan

  6. One-shot quantum capacity

  7. One-shot quantum capacity ⊚ Unassisted code (UA): R Π A i B i → A o B o � E A i → A o ⊗ D B i → B o . B o A i E D ⊚ Positive partial transpose preserving Π (PPT) code: [Rains, 1999; Rains, 2001] T Bi Bo N Π A i B i → A o B o PPT operation J ≥ 0 . A o B i Π id k ⊚ Non-signalling (NS) code: [Leung, Matthews, 2015; Duan, Winter, 2016] 1 A i A i B o Tr A o J Π � ⊗ Tr A i A o J Π , ( A � B ) d A i 1 B i E Π D Tr B o J Π � ⊗ Tr B i B o J Π , ( B � A ) d B i A o B i � � PPT UA NS J Π � Π A i B i → A o B o Φ A i B i : A ′ i B ′ i Semidefinite programming converse bounds for quantum communication(1709.00200) X. Wang, K. Fang , R. Duan

  8. R Φ k B o A i E D Π N A o B i id k Maximum channel fidelity Tr � � F Ω ( N , k ) : � sup Φ k · Π ◦ N ( Φ k ) . Π ∈ Ω input output One-shot quantum capacity error tolerance Q ( 1 ) Ω ( N , ε ) : � log max { k : F Ω ( N , k ) ≥ 1 − ε } . (Asymptotic) quantum capacity � N ⊗ n , ε � 1 n Q ( 1 ) Q Ω ( N ) � lim ε → 0 lim . Ω n →∞ Semidefinite programming converse bounds for quantum communication(1709.00200) X. Wang, K. Fang , R. Duan

  9. SDP converse bounds for one-shot quantum capacity [Leung, Matthews, 2015] F Ω ( N , k ) � max Tr J N W AB s.t. 0 ≤ W AB ≤ ρ A ⊗ 1 B , Tr ρ A � 1 , PPT: − k − 1 ρ A ⊗ 1 B ≤ W T B AB ≤ k − 1 ρ A ⊗ 1 B , NS: Tr A W AB � k − 2 1 B . Optimization characterization Q ( 1 ) PPT ( N , ε ) � − log min m s.t. Tr J N W AB ≥ 1 − ε, 0 ≤ W AB ≤ ρ A ⊗ 1 B , Tr ρ A � 1 , − m ρ A ⊗ 1 B ≤ W T B AB ≤ m ρ A ⊗ 1 B , � � Tr A W AB � m 2 1 B . NS condition Non-linear terms Semidefinite programming converse bounds for quantum communication(1709.00200) X. Wang, K. Fang , R. Duan

  10. Q ( 1 ) PPT ( N , ε ) � − log min m s.t. Tr J N W AB ≥ 1 − ε, 0 ≤ W AB ≤ ρ A ⊗ 1 B , (1) TB Tr ρ A � 1 , − m ρ A ⊗ 1 B ≤ W AB ≤ m ρ A ⊗ 1 B . � Tr A W AB � m 2 1 B . NS condition � g ( N , ε ) : � min Tr S A s.t. Tr J N W AB ≥ 1 − ε, 0 ≤ W AB ≤ ρ A ⊗ 1 B , (2) TB Tr ρ A � 1 , − S A ⊗ 1 B ≤ W AB ≤ S A ⊗ 1 B . � g ( N , ε ) : � min Tr S A s.t. Tr J N W AB ≥ 1 − ε, 0 ≤ W AB ≤ ρ A ⊗ 1 B , (3) TB Tr ρ A � 1 , − S A ⊗ 1 B ≤ W AB ≤ S A ⊗ 1 B , Tr A W AB � t 1 B . g ( N , ε ) : � min Tr S A � s.t. Tr J N W AB ≥ 1 − ε, 0 ≤ W AB ≤ ρ A ⊗ 1 B , TB Tr ρ A � 1 , − S A ⊗ 1 B ≤ W AB ≤ S A ⊗ 1 B , (4) m 2 , Tr A W AB � t 1 B , t ≥ � Q ( 1 ) � � PPT ∩ NS ( N , ε ) ≤ − log � m . Semidefinite programming converse bounds for quantum communication(1709.00200) X. Wang, K. Fang , R. Duan

  11. Main result 1: SDP converse bounds for one-shot quantum capacity [Tomamichel, Berta, Renes, 2016] f ( N , ε ) � min Tr S A s.t. Tr J N W AB ≥ 1 − ε, S A , Θ AB ≥ 0 , Tr ρ A � 1 , (5) 0 ≤ W AB ≤ ρ A ⊗ 1 B , S A ⊗ 1 B ≥ W AB + Θ T B AB . Theorem For any quantum channel N and error tolerance ε , the inequality chain holds Q ( 1 ) ( N , ε ) ≤ Q ( 1 ) PPT ∩ NS ( N , ε ) (6) ≤ − log � g ( N , ε ) ≤ − log � g ( N , ε ) ≤ − log g ( N , ε ) ≤ − log f ( N , ε ) . Semidefinite programming converse bounds for quantum communication(1709.00200) X. Wang, K. Fang , R. Duan

  12. Example: Amplitude damping channel Amplitude damping channel N AD � � 1 i � 0 E i · E † i with √ √ E 0 � | 0 � � 0 | + 1 − r | 1 � � 1 | r | 0 � � 1 | , E 1 � 0 ≤ r ≤ 1 1.15 1.1 1.05 Qubit 1 0.95 0.082 0.082 0.082 0.082 0.082 0.082 0.082 0.082 0.082 0.082 0.082 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.9 0.06 0.07 0.08 0.09 0.1 Channel parameter r Semidefinite programming converse bounds for quantum communication(1709.00200) X. Wang, K. Fang , R. Duan

  13. Example: Qubit depolarizing channel � ρ � � � 1 − p � � X ρ X + Y ρ Y + Z ρ Z � ρ + p Qubit depolarizing channel N D , 3 where X , Y , Z are Pauli matrices . 2.5 2 Qubit 1.5 1 0.5 17 27 0 5 10 15 20 25 30 Number of channel copies, n Semidefinite programming converse bounds for quantum communication(1709.00200) X. Wang, K. Fang , R. Duan

  14. Asymptotic quantum capacity

  15. SDP strong converse bound for quantum capacity Q ( 1 ) PPT ( N , ε ) � − log min m s.t. Tr J N W AB ≥ 1 − ε, 0 ≤ W AB ≤ ρ A ⊗ 1 B , Tr ρ A � 1 , − m ρ A ⊗ 1 B ≤ W T B AB ≤ m ρ A ⊗ 1 B . Take R AB � W AB / m and throw away the condition W AB ≤ ρ A ⊗ 1 B , we obtain an additive SDP upper bound Q ( 1 ) PPT ( N , ε ) ≤ Q Γ ( N ) − log ( 1 − ε ) , where Q Γ ( N ) � log max Tr J N R AB s.t. R AB , ρ A ≥ 0 , Tr ρ A � 1 , (7) − ρ A ⊗ 1 B ≤ R T B AB ≤ ρ A ⊗ 1 B . ⊚ Additivity: Q Γ ( N ⊗ M ) � Q Γ ( N ) + Q Γ ( M ) (by utilizing SDP duality). ⊚ Converse bound for Q ( N ) : Q ( N ) ≤ Q PPT ( N ) ≤ Q Γ ( N ) . ⊚ For noiseless quantum channel I d , Q ( I d ) � Q Γ ( I d ) � log 2 d . ⊚ Strong converse: denote the n-shot optimal rate as r , then ( r , n , ε ) satisfies nr ≤ nQ Γ ( N ) − log ( 1 − ε ) , which implies ε ≥ 1 − 2 n ( Q Γ ( N ) − r ) . Semidefinite programming converse bounds for quantum communication(1709.00200) X. Wang, K. Fang , R. Duan

  16. Main result 2: SDP strong converse bound for quantum capacity Theorem (SDP strong converse bound for Q) For any quantum channel N , Q ( N ) ≤ Q Γ ( N ) � log max Tr J N R AB s.t. R AB , ρ A ≥ 0 , Tr ρ A � 1 , − ρ A ⊗ 1 B ≤ R T B AB ≤ ρ A ⊗ 1 B . The fidelity of transmission goes to zero if the rate exceeds Q Γ ( N ) . How to understand Q Γ ( N ) ? Entanglement measure � � φ AA ′ �� Q Γ ( N ) � ρ A ∈ S ( A ) E W max N A ′ → B � � φ AA ′ � � σ � � max ρ ∈ S ( A ) min σ ∈ PPT ′ D max N A ′ → B � � � ρ � Tr ρ R AB : − 1 AB ≤ R T B where E W : � log max AB ≤ 1 AB , R AB ≥ 0 , [Wang, Duan, 2016], φ AA ′ is a purification of ρ A and PPT’ � � σ ≥ 0 : � σ T B � 1 ≤ 1 � . Remark: For any EB channel N , Q Γ ( N ) � 0 . If Q E ( N ) � 0 , Q Γ ( N ) < Q E ( N ) . Semidefinite programming converse bounds for quantum communication(1709.00200) X. Wang, K. Fang , R. Duan

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend