bounds on the size of identifying codes for graphs of
play

Bounds on the size of identifying codes for graphs of maximum degree - PowerPoint PPT Presentation

Bounds on the size of identifying codes for graphs of maximum degree Florent Foucaud joint work with Ralf Klasing, Adrian Kosowski, Andr Raspaud Universit Bordeaux 1 September 2009 F. Foucaud (U. Bordeaux 1) Bounds on id codes


  1. Bounds on the size of identifying codes for graphs of maximum degree ∆ Florent Foucaud joint work with Ralf Klasing, Adrian Kosowski, André Raspaud Université Bordeaux 1 September 2009 F. Foucaud (U. Bordeaux 1) Bounds on id codes September 2009 1 / 25

  2. Locating a fire in a building simple, undirected graph : models a building a c d b e f F. Foucaud (U. Bordeaux 1) Bounds on id codes September 2009 2 / 25

  3. Locating a fire in a building simple detectors : able to detect a fire in a neighbouring room goal : locate an eventual fire { b , c } { b } { c } a c d { b , c } b b c a • e f b • • { b } { b , c } • • c d • e • f • • F. Foucaud (U. Bordeaux 1) Bounds on id codes September 2009 3 / 25

  4. Locating a fire in a building simple detectors : able to detect a fire in a neighbouring room goal : locate an eventual fire fire in room f { b , c } { b } { c } a c d { b , c } b b c a • e f b • • { b } { b , c } • • c d • e • f • • F. Foucaud (U. Bordeaux 1) Bounds on id codes September 2009 4 / 25

  5. Locating a fire in a building simple detectors : able to detect a fire in a neighbouring room goal : locate an eventual fire fire in room f the identifying sets of all vertices must be distinct { b , c , d } { a , b } { c , d } a c d { a , b , c } b a b c d a • • e f b • • • { b } { b , c } c • • • d • • e • f • • F. Foucaud (U. Bordeaux 1) Bounds on id codes September 2009 5 / 25

  6. Identifying codes : definition Definition : identifying code of a graph G = ( V , E ) (Karpovsky et al. 1998 [2]) subset C of V such that : C is a dominating set in G , and for all distinct u , v of V , u and v have distinct identifying sets : N [ u ] ∩ C � = N [ v ] ∩ C F. Foucaud (U. Bordeaux 1) Bounds on id codes September 2009 6 / 25

  7. Identifying codes : definition Definition : identifying code of a graph G = ( V , E ) (Karpovsky et al. 1998 [2]) subset C of V such that : C is a dominating set in G , and for all distinct u , v of V , u and v have distinct identifying sets : N [ u ] ∩ C � = N [ v ] ∩ C Remark Note : close to locating-dominating sets (Slater, Rall 84 [4]) F. Foucaud (U. Bordeaux 1) Bounds on id codes September 2009 6 / 25

  8. Identifying codes : definition Definition : identifying code of a graph G = ( V , E ) (Karpovsky et al. 1998 [2]) subset C of V such that : C is a dominating set in G , and for all distinct u , v of V , u and v have distinct identifying sets : N [ u ] ∩ C � = N [ v ] ∩ C Remark Note : close to locating-dominating sets (Slater, Rall 84 [4]) Notation γ id ( G ) : minimum cardinality of an identifying code in a graph G F. Foucaud (U. Bordeaux 1) Bounds on id codes September 2009 6 / 25

  9. Identifiable graphs Remark : not all graphs admit an identifying code u and v are twin vertices if N [ u ] = N [ v ] . A graph is identifiable iff it has no twin vertices. F. Foucaud (U. Bordeaux 1) Bounds on id codes September 2009 7 / 25

  10. Identifiable graphs Remark : not all graphs admit an identifying code u and v are twin vertices if N [ u ] = N [ v ] . A graph is identifiable iff it has no twin vertices. Non-identifiable graphs F. Foucaud (U. Bordeaux 1) Bounds on id codes September 2009 7 / 25

  11. Identifiable graphs Remark : not all graphs admit an identifying code u and v are twin vertices if N [ u ] = N [ v ] . A graph is identifiable iff it has no twin vertices. Non-identifiable graphs F. Foucaud (U. Bordeaux 1) Bounds on id codes September 2009 7 / 25

  12. Lower bound and maximum degree Thm (Karpovski et al. 98 [2]) Let G be an identifiable graph with n vertices. Then γ id ( G ) ≥ ⌈ log 2 ( n + 1 ) ⌉ . F. Foucaud (U. Bordeaux 1) Bounds on id codes September 2009 8 / 25

  13. Lower bound and maximum degree Thm (Karpovski et al. 98 [2]) Let G be an identifiable graph with n vertices. Then γ id ( G ) ≥ ⌈ log 2 ( n + 1 ) ⌉ . Characterization The graphs reaching this bound have been characterized (Moncel 06 [3]) F. Foucaud (U. Bordeaux 1) Bounds on id codes September 2009 8 / 25

  14. Lower bound and maximum degree Thm (Karpovski et al. 98 [2]) Let G be an identifiable graph with n vertices. Then γ id ( G ) ≥ ⌈ log 2 ( n + 1 ) ⌉ . Characterization The graphs reaching this bound have been characterized (Moncel 06 [3]) Thm (Karpovski et al. 98 [2]) Let G be an identifiable graph with n vertices and maximum degree ∆ . 2 n Then γ id ( G ) ≥ ∆ + 2. F. Foucaud (U. Bordeaux 1) Bounds on id codes September 2009 8 / 25

  15. Graphs reaching the lower bound Characterization n vertices 2 n independent set C of size ∆+ 2 (id. code) every vertex of C has exactly ∆ neighbours ∆ n ∆+ 2 vertices connected to exactly 2 code vertices each F. Foucaud (U. Bordeaux 1) Bounds on id codes September 2009 9 / 25

  16. Graphs reaching the lower bound - example Example : D =Petersen graph, ∆ = 3, n = 10 F. Foucaud (U. Bordeaux 1) Bounds on id codes September 2009 10 / 25

  17. Graphs reaching the lower bound - example Example : D =Petersen graph, ∆ = 3, n = 10 F. Foucaud (U. Bordeaux 1) Bounds on id codes September 2009 11 / 25

  18. Graphs reaching the lower bound - example Example : D =Petersen graph, ∆ = 3, n = 10 F. Foucaud (U. Bordeaux 1) Bounds on id codes September 2009 12 / 25

  19. A general upper bound Thm (Gravier, Moncel 07 [1]) Let G be an identifiable connected graph with n ≥ 3 vertices. Then γ id ( G ) ≤ n − 1. F. Foucaud (U. Bordeaux 1) Bounds on id codes September 2009 13 / 25

  20. A general upper bound Thm (Gravier, Moncel 07 [1]) Let G be an identifiable connected graph with n ≥ 3 vertices. Then γ id ( G ) ≤ n − 1. Thm (Gravier, Moncel 07 [1]) For all n ≥ 3, there exist identifiable graphs with n vertices with γ id ( G ) = n − 1. F. Foucaud (U. Bordeaux 1) Bounds on id codes September 2009 13 / 25

  21. Upper bound - example Example : the star K 1 , n − 1 F. Foucaud (U. Bordeaux 1) Bounds on id codes September 2009 14 / 25

  22. Upper bound - example Example : the star K 1 , n − 1 F. Foucaud (U. Bordeaux 1) Bounds on id codes September 2009 14 / 25

  23. Upper bound and maximum degree Remark All these graphs have a high maximum degree ∆( G ) : n − 1 or n − 2. F. Foucaud (U. Bordeaux 1) Bounds on id codes September 2009 15 / 25

  24. Result - general case Thm (F., Klasing, Kosowski and Raspaud 09) Let G be a connected identifiable graph of maximum degree ∆ . n Then γ id ( G ) ≤ n − Θ(∆ 4 ) . n If G is regular, γ id ( G ) ≤ n − Θ(∆ 2 ) . F. Foucaud (U. Bordeaux 1) Bounds on id codes September 2009 16 / 25

  25. Result - general case Thm (F., Klasing, Kosowski and Raspaud 09) Let G be a connected identifiable graph of maximum degree ∆ . n Then γ id ( G ) ≤ n − Θ(∆ 4 ) . n If G is regular, γ id ( G ) ≤ n − Θ(∆ 2 ) . Sketch of the proof Greedily construct a 4-independant (resp. 2-independent) set S : distance between two vertices is at least 5 (resp. 3) take C = V \ S as a code C must be modified locally F. Foucaud (U. Bordeaux 1) Bounds on id codes September 2009 16 / 25

  26. Connected cliques Take any ∆ -regular graph H with m vertices replace any vertex of H by a clique of ∆ vertices F. Foucaud (U. Bordeaux 1) Bounds on id codes September 2009 17 / 25

  27. Connected cliques Take any ∆ -regular graph H with m vertices replace any vertex of H by a clique of ∆ vertices Example : H = K 4 F. Foucaud (U. Bordeaux 1) Bounds on id codes September 2009 17 / 25

  28. Connected cliques Take any ∆ -regular graph H with m vertices Replace any vertex of H by a clique of ∆ vertices Exemple : H = K 4 F. Foucaud (U. Bordeaux 1) Bounds on id codes September 2009 18 / 25

  29. Connected cliques Take any ∆ -regular graph H with m vertices replace any vertex of H by a clique of ∆ vertices Exemple : H = K 4 For every clique, at least ∆ − 1 vertices in the code ⇒ γ id ( G ) ≥ m · (∆ − 1 ) = n − n ∆ F. Foucaud (U. Bordeaux 1) Bounds on id codes September 2009 19 / 25

  30. Large codes in triangle-free graphs Proposition Let K m , m be the complete bipartite graph with n = 2 m vertices. id ( K m , m ) = 2 m − 2 = n − n ∆ . F. Foucaud (U. Bordeaux 1) Bounds on id codes September 2009 20 / 25

  31. Large codes in triangle-free graphs Proposition Let K m , m be the complete bipartite graph with n = 2 m vertices. id ( K m , m ) = 2 m − 2 = n − n ∆ . Thm (Bertrand et al. 05) Let T h k be the k -ary tree with h levels and n vertices. k 2 n � � n id ( T h k ) = = n − . k 2 + k + 1 ∆ − 1 + 1 ∆ F. Foucaud (U. Bordeaux 1) Bounds on id codes September 2009 20 / 25

  32. Triangle-free graphs - Result Thm (F., Klasing, Kosowski and Raspaud 09) Let G be a connected triangle-free identifiable graph G with n ≥ 3 vertices and maximum degree ∆ . n Then γ id ( G ) ≤ n − 3 ∆+ 3 . n If G is regular, γ id ( G ) ≤ n − 2 ∆+ 2 . F. Foucaud (U. Bordeaux 1) Bounds on id codes September 2009 21 / 25

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend