seeing glass in a new light
play

Seeing glass in a new light: Chalcogenide glass-enabled integrated - PowerPoint PPT Presentation

Seeing glass in a new light: Chalcogenide glass-enabled integrated photonics Juejun (JJ) Hu Materials Science & Engineering, MIT Juejun (JJ) Hu PMAT hujuejun@mit.edu Former Members & Collaborators PMAT T @ Lan Li Tian Gu Derek


  1. Seeing glass in a new light: Chalcogenide glass-enabled integrated photonics Juejun (JJ) Hu Materials Science & Engineering, MIT Juejun (JJ) Hu PMAT hujuejun@mit.edu

  2. Former Members & Collaborators PMAT T @ Lan Li Tian Gu Derek Kita Hongtao Lin Jerome Michon Ying Pan Qingyang Du Kathleen Richardson Sarah Geiger Duanhui Li Anu Agarwal Shaoliang Yu Skylar Deckoff-Jones Carlos-Rios Ocampo Funding support Yifei Zhang Samuel Serna Mikhail Shalaginov Jun Qin Juejun (JJ) Hu PMAT hujuejun@mit.edu

  3. Photonic Materials Research Group (PMAT) Nonreciprocal & nonlinear optics ACS Photonics 5 , 5010 (2018) Photon. Res. 6 , B37 (2018) Opt. Express 27 , 13781 (2019) On-chip Sensing 2-D material photonic integration Appl. Phys. Lett. 114 , 051103 (2019) Photon. Res. 6 , 506 (2018) Nat. Photonics 11 , 798 (2017) Nanophotonics 7 , 393 (2018) J. Opt. 20 , 044004 (2018) Chalcogenide photonics Flexible photonics Metasurfaces Nat. Photonics 8 , 643 (2014) Nat. Commun. 9 , 1481 (2018) Light Sci. Appl. 7 , e17138 (2018) Optica 5 , 44 (2018) Optical phase change materials Nat. Commun. (2019) Opt. Lett. 43 , 94-97 (2018)

  4. Photonic Materials Research Group (PMAT) Nonreciprocal & nonlinear optics ACS Photonics 5 , 5010 (2018) Photon. Res. 6 , B37 (2018) Opt. Express 27 , 13781 (2019) On-chip Sensing 2-D material photonic integration Appl. Phys. Lett. 114 , 051103 (2019) Photon. Res. 6 , 506 (2018) Nat. Photonics 11 , 798 (2017) Nanophotonics 7 , 393 (2018) J. Opt. 20 , 044004 (2018) Chalcogenide photonics Flexible photonics Metasurfaces Nat. Photonics 8 , 643 (2014) Nat. Commun. 9 , 1481 (2018) Light Sci. Appl. 7 , e17138 (2018) Optica 5 , 44 (2018) Optical phase change materials Nat. Commun. (2019) Opt. Lett. 43 , 94-97 (2018)

  5. ChGs enabling substrate-agnostic integration ☺ Epitaxy-free deposition ☺ Low deposition temperature B C N O F Weaker Al Si P S Cl inter-atomic bonds Ga Ge As Se Br In Sn Sb Te I Tl Pb Bi Po At Room temperature processing Juejun (JJ) Hu PMAT hujuejun@mit.edu

  6. ChGs enabling substrate-agnostic integration ☺ Epitaxy-free deposition ☺ Low deposition temperature ☺ Versatile microfabrication Waveguide loss: Ge 23 Sb 7 S 70 0.5 dB/cm glass waveguide Cavity Q-factor: 1.2 × 10 6 2 µm Opt. Lett. 41 , 3090 (2016) Juejun (JJ) Hu PMAT hujuejun@mit.edu

  7. ChGs enabling substrate-agnostic integration ☺ Epitaxy-free deposition ☺ Low deposition temperature ☺ Versatile microfabrication ☺ Chemical stability & inertness ChG can function as a passivation coating for 2-D materials Juejun (JJ) Hu PMAT hujuejun@mit.edu

  8. R ~ 0.2 mm Juejun (JJ) Hu PMAT hujuejun@mit.edu

  9. Making stretchable photonics out of rigid glass Grating coupler Devices on locally stiffened islands interconnected by serpentine waveguides Resonator Juejun (JJ) Hu PMAT hujuejun@mit.edu

  10. Light Sci. Appl. 7 , e17138 (2018) ▪ Before 3000 cycles @ 42% ▪ After 3000 cycles @ 42% Juejun (JJ) Hu PMAT hujuejun@mit.edu

  11. The world is not flat but rather 3-D Create 3-D photonics from planar structures via deterministic deformation Planar device 3-D structure Juejun (JJ) Hu PMAT hujuejun@mit.edu

  12. 3-D photonic fabrication 5 mm On substrate Delamination On stage 2 mm 3-D structure Tape removal After buckling Juejun (JJ) Hu PMAT hujuejun@mit.edu

  13. A sensor for 3-D stress mapping in soft materials Collagen Fibers Fiber array block Device A 3-D stress sensor with force sensitivity down to 10 nN Photon. Res. 8 , 194-201 (2020) Juejun (JJ) Hu PMAT hujuejun@mit.edu

  14. Photonic Materials Research Group (PMAT) Nonreciprocal & nonlinear optics ACS Photonics 5 , 5010 (2018) Photon. Res. 6 , B37 (2018) Opt. Express 27 , 13781 (2019) On-chip Sensing 2-D material photonic integration Appl. Phys. Lett. 114 , 051103 (2019) Photon. Res. 6 , 506 (2018) Nat. Photonics 11 , 798 (2017) Nanophotonics 7 , 393 (2018) J. Opt. 20 , 044004 (2018) Chalcogenide photonics Flexible photonics Metasurfaces Nat. Photonics 8 , 643 (2014) Nat. Commun. 9 , 1481 (2018) Light Sci. Appl. 7 , e17138 (2018) Optica 5 , 44 (2018) Optical phase change materials Nat. Commun. (2019) Opt. Lett. 43 , 94-97 (2018)

  15. Photonic Materials Research Group (PMAT) Nonreciprocal & nonlinear optics ACS Photonics 5 , 5010 (2018) Photon. Res. 6 , B37 (2018) Opt. Express 27 , 13781 (2019) On-chip Sensing 2-D material photonic integration Appl. Phys. Lett. 114 , 051103 (2019) Photon. Res. 6 , 506 (2018) Nat. Photonics 11 , 798 (2017) Nanophotonics 7 , 393 (2018) J. Opt. 20 , 044004 (2018) Chalcogenide photonics Flexible photonics Metasurfaces Nat. Photonics 8 , 643 (2014) Nat. Commun. 9 , 1481 (2018) Light Sci. Appl. 7 , e17138 (2018) Optica 5 , 44 (2018) Optical phase change materials Nat. Commun. (2019) Opt. Lett. 43 , 94-97 (2018)

  16. Photonic integration of 2-D materials relies on hybrid transfer Nature 474 , 64-67 (2011) Fabricated device 2-D layer transfer Hybrid transfer: Monolithic integration: ✓ Improved yield and × 2-D layer rupture at pattern edges throughput ✓ Flexible 2-D layer placement × Weak evanescent interaction ✓ Superior alignment accuracy × Limited throughput and integration capacity × Material degradation Juejun (JJ) Hu PMAT hujuejun@mit.edu

  17. Thick dielectric growth on graphene is difficult due to its inert surface 3000 Prior to deposition 2500 After deposition 2 /Vs) 2000 Mobility (cm 1500 1000 500 0 SiO 2 TiO 2 × Direct dielectric deposition often results in defect formation which degrades graphene properties × Atomic layer deposition: low throughput for optical devices Juejun (JJ) Hu PMAT hujuejun@mit.edu

  18. Compatibility of ChGs with graphene 2D G ChG maintains the structural and optoelectronic properties of graphene Nat. Photonics 11 , 798 (2017) Juejun (JJ) Hu PMAT hujuejun@mit.edu

  19. Compatibility of ChGs with other 2-D materials MoS 2 Black phosphorus Hexagonal InSe BN Juejun (JJ) Hu PMAT hujuejun@mit.edu

  20. ChGs as a passivation layer for 2-D materials The multifunctional ChG material Black phosphorus ✓ Broadband light guiding medium ✓ Passivation layer for 2-D materials ✓ Gate dielectric 30 nm Ge 23 Sb 7 S 70 glass film Nat. Photonics 11 , 798 (2017) Juejun (JJ) Hu PMAT hujuejun@mit.edu

  21. Photonic Materials Research Group (PMAT) Nonreciprocal & nonlinear optics ACS Photonics 5 , 5010 (2018) Photon. Res. 6 , B37 (2018) Opt. Express 27 , 13781 (2019) On-chip Sensing 2-D material photonic integration Appl. Phys. Lett. 114 , 051103 (2019) Photon. Res. 6 , 506 (2018) Nat. Photonics 11 , 798 (2017) Nanophotonics 7 , 393 (2018) J. Opt. 20 , 044004 (2018) Chalcogenide photonics Flexible photonics Metasurfaces Nat. Photonics 8 , 643 (2014) Nat. Commun. 9 , 1481 (2018) Light Sci. Appl. 7 , e17138 (2018) Optica 5 , 44 (2018) Optical phase change materials Nat. Commun. (2019) Opt. Lett. 43 , 94-97 (2018)

  22. Photonic Materials Research Group (PMAT) Nonreciprocal & nonlinear optics ACS Photonics 5 , 5010 (2018) Photon. Res. 6 , B37 (2018) Opt. Express 27 , 13781 (2019) On-chip Sensing 2-D material photonic integration Appl. Phys. Lett. 114 , 051103 (2019) Photon. Res. 6 , 506 (2018) Nat. Photonics 11 , 798 (2017) Nanophotonics 7 , 393 (2018) J. Opt. 20 , 044004 (2018) Chalcogenide photonics Flexible photonics Metasurfaces Nat. Photonics 8 , 643 (2014) Nat. Commun. 9 , 1481 (2018) Light Sci. Appl. 7 , e17138 (2018) Optica 5 , 44 (2018) Optical phase change materials Nat. Commun. (2019) Opt. Lett. 43 , 94-97 (2018)

  23. Optical phase change materials (O-PCMs) Amorphous Crystalline Quench Anneal Covalent Resonant bonding bonding Index change D n > 1 Juejun (JJ) Hu PMAT hujuejun@mit.edu

  24. Traditional O-PCMs (Ge-Sb-Te) are optically lossy Short l : Long l : Band-to-band Free carrier Free carrier absorption absorption (both a- & c-) (c- only) Band-to-band Optical losses in O-PCMs are bound by interband absorption at short wavelength and free carrier absorption at long wavelength Juejun (JJ) Hu PMAT hujuejun@mit.edu

  25. GSST: an extreme broadband transparent phase change alloy 6 6 Ge 2 Sb 2 Se 4 Te 1 (GSST) Extinction coefficient k ✓ Index change: 5 5 Refractive index n D n = 1.7 – 2.1 4 4 ✓ Loss: k < 0.01 D n = 1.7 – 2.1 3 3 1 – 18.5 m m (a) 4 – 18.5 m m (c) 2 2 FOM 100x higher 1 1 than GST-225 k < 0.01 0 0 2 4 6 8 10 12 14 16 18 Nat. Commun. 10 , 4279 (2019) Wavelength ( m m) Juejun (JJ) Hu PMAT hujuejun@mit.edu

  26. Free-space reflective light modulator pixel Patterned Metasurfaces Vdd 1 30 μm GSS4T1 2 Pulse 2 1 Subwavelength Pixels 30 μm 1 μm Nat. Commun. 10 , 4279 (2019) Juejun (JJ) Hu PMAT hujuejun@mit.edu

  27. Switching of free-space reflective pixel 0.4 0.3 Reflectance 0.2 0.1 0.0 0 2 4 6 8 10 12 14 Time [s] 22% absolute Consistent 1,000 cycle reflectance contrast switching Juejun (JJ) Hu PMAT hujuejun@mit.edu

  28. Electrically switchable metasurface based on GSST First demonstration of electrically switchable metasurface based on O-PCMs Juejun (JJ) Hu PMAT hujuejun@mit.edu

  29. Switchable metasurface: multi-state operation 40 5 µs – 24.5 V Amorphous 9.5 V 11.3 V Increasing voltage 30 Reflectance (%) 20 Crystalline 500 ms – 10 variable voltage 0 Half-octave (480 nm) 1200 1300 1400 1500 1600 spectral tuning Wavelength (nm) Juejun (JJ) Hu PMAT hujuejun@mit.edu

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend