sdp and eigenvalue bounds for the graph partition problem
play

SDP and eigenvalue bounds for the graph partition problem Renata - PowerPoint PPT Presentation

SDP and GPP SotirovR SDP and eigenvalue bounds for the graph partition problem Renata Sotirov and Edwin van Dam Tilburg University, The Netherlands SDP and GPP Outline . . . SotirovR the graph partition problem SDP and GPP Outline . . .


  1. SDP and GPP Simplification – ‘highly symmetric’ graphs . . . SotirovR r z i A i , z i ∈ R ( r ≪ n 2 ) ⇒ Y = � i =1 r 1 2 tr( AJ n ) − 1 � min z i tr( AA i ) 2 i =1 s . t . � z i diag( A i ) = u n i ∈I (GPP m ) r k m 2 � z i tr( JA i ) = � i i =1 i =1 r � z i A i − J n � 0 , z i ≥ 0 , i = 1 , . . . , r . k j =1

  2. SDP and GPP Simplification – ‘highly symmetric’ graphs . . . SotirovR r z i A i , z i ∈ R ( r ≪ n 2 ) ⇒ Y = � i =1 r 1 2 tr( AJ n ) − 1 � min z i tr( AA i ) 2 i =1 s . t . � z i diag( A i ) = u n i ∈I (GPP m ) r k m 2 � z i tr( JA i ) = � i i =1 i =1 r � z i A i − J n � 0 , z i ≥ 0 , i = 1 , . . . , r . k j =1 LMI may be (block-)diagonalized

  3. SDP and GPP Simplification – ‘highly symmetric’ graphs . . . SotirovR r z i A i , z i ∈ R ( r ≪ n 2 ) ⇒ Y = � i =1 r 2 tr( AJ n ) − 1 1 � min z i tr( AA i ) 2 i =1 s . t . � z i diag( A i ) = u n i ∈I (GPP m ) r k m 2 � z i tr( JA i ) = � i i =1 i =1 r � z i A i − J n � 0 , z i ≥ 0 , i = 1 , . . . , r . k j =1 LMI may be (block-)diagonalized exploit properties of A i to aggregate ∆ and indep. set const. ⇒ extend the approach from: M.X. Goemans, F. Rendl. Semidefinite Programs and Association Schemes. Computing , 63(4):331–340, 1999.

  4. SDP and GPP On aggregating constraints . . . SotirovR for a given ( a , b , c ) consider the ∆ inequality y ab + y ac ≤ 1 + y bc

  5. SDP and GPP On aggregating constraints . . . SotirovR for a given ( a , b , c ) consider the ∆ inequality y ab + y ac ≤ 1 + y bc if ( A i ) ab = 1, ( A h ) ac = 1, ( A j ) bc = 1 ⇒ type ( i , j , h ) ineq.,

  6. SDP and GPP On aggregating constraints . . . SotirovR for a given ( a , b , c ) consider the ∆ inequality y ab + y ac ≤ 1 + y bc if ( A i ) ab = 1, ( A h ) ac = 1, ( A j ) bc = 1 ⇒ type ( i , j , h ) ineq., by summing all ineq. of type ( i , j , h ), the aggregated ∆ ineq.: hj ′ tr A i J + p j p i hj ′ tr A i Y + p h ij tr A h Y ≤ p i i ′ h tr A j Y , ij : A i A j = � r where p h h =1 p h ij A h j ′ : is the index s.t. A j ′ = A T j

  7. SDP and GPP On aggregating constraints . . . SotirovR for a given ( a , b , c ) consider the ∆ inequality y ab + y ac ≤ 1 + y bc if ( A i ) ab = 1, ( A h ) ac = 1, ( A j ) bc = 1 ⇒ type ( i , j , h ) ineq., by summing all ineq. of type ( i , j , h ), the aggregated ∆ ineq.: hj ′ tr A i J + p j p i hj ′ tr A i Y + p h ij tr A h Y ≤ p i i ′ h tr A j Y , ij : A i A j = � r where p h h =1 p h ij A h j ′ : is the index s.t. A j ′ = A T j use: Y = � r j =1 z j A j

  8. SDP and GPP On aggregating constraints . . . SotirovR for a given ( a , b , c ) consider the ∆ inequality y ab + y ac ≤ 1 + y bc if ( A i ) ab = 1, ( A h ) ac = 1, ( A j ) bc = 1 ⇒ type ( i , j , h ) ineq., by summing all ineq. of type ( i , j , h ), the aggregated ∆ ineq.: hj ′ tr A i J + p j p i hj ′ tr A i Y + p h ij tr A h Y ≤ p i i ′ h tr A j Y , ij : A i A j = � r where p h h =1 p h ij A h j ′ : is the index s.t. A j ′ = A T j use: Y = � r j =1 z j A j ♯ of aggregated ∆ constraints is bounded by r 3

  9. SDP and GPP On aggregating constraints . . . SotirovR for a given ( a , b , c ) consider the ∆ inequality y ab + y ac ≤ 1 + y bc if ( A i ) ab = 1, ( A h ) ac = 1, ( A j ) bc = 1 ⇒ type ( i , j , h ) ineq., by summing all ineq. of type ( i , j , h ), the aggregated ∆ ineq.: hj ′ tr A i J + p j p i hj ′ tr A i Y + p h ij tr A h Y ≤ p i i ′ h tr A j Y , ij : A i A j = � r where p h h =1 p h ij A h j ′ : is the index s.t. A j ′ = A T j use: Y = � r j =1 z j A j ♯ of aggregated ∆ constraints is bounded by r 3 similar approach applies to independent set constr. when k = 2

  10. SDP and GPP Simplification – ’highly symmetric’ graphs . . . SotirovR Example. Strongly regular graph (SRG)

  11. SDP and GPP Simplification – ’highly symmetric’ graphs . . . SotirovR Example. Strongly regular graph (SRG) n vertices, κ the valency of the graph

  12. SDP and GPP Simplification – ’highly symmetric’ graphs . . . SotirovR Example. Strongly regular graph (SRG) n vertices, κ the valency of the graph A has exactly two eigenvalues r ≥ 0 and s < 0 associated with eigenvectors ⊥ u n

  13. SDP and GPP Simplification – ’highly symmetric’ graphs . . . SotirovR Example. Strongly regular graph (SRG) n vertices, κ the valency of the graph A has exactly two eigenvalues r ≥ 0 and s < 0 associated with eigenvectors ⊥ u n A belongs to the *-algebra spanned by { I , A , J − A − I }

  14. SDP and GPP Simplification – ’highly symmetric’ graphs . . . SotirovR Example. Strongly regular graph (SRG) n vertices, κ the valency of the graph A has exactly two eigenvalues r ≥ 0 and s < 0 associated with eigenvectors ⊥ u n A belongs to the *-algebra spanned by { I , A , J − A − I } ⇒ Y = I + z 1 A + z 2 ( J − A − I )

  15. SDP and GPP Simplification – ’highly symmetric’ graphs . . . SotirovR Example. Strongly regular graph (SRG) n vertices, κ the valency of the graph A has exactly two eigenvalues r ≥ 0 and s < 0 associated with eigenvectors ⊥ u n A belongs to the *-algebra spanned by { I , A , J − A − I } ⇒ Y = I + z 1 A + z 2 ( J − A − I ) 1 min 2 κ n (1 − z 1 ) k κ z 1 + ( n − κ − 1) z 2 = 1 m 2 � s . t . i − 1 n i =1 (GPP m ) 1 + rz 1 − ( r + 1) z 2 ≥ 0 1 + sz 1 − ( s + 1) z 2 ≥ 0 z 1 , z 2 ≥ 0

  16. SDP and GPP SRG SotirovR Theorem . Let G = ( V , E ) be a SRG with eigenvalues κ, r , s . Let m i ∈ N , i = 1 , . . . , k s.t. � k j =1 m j = n . Then the SDP bound for the minimum k -partition is � �� κ − r 1 � i m 2 max � i < j m i m j , n ( κ + 1) − � i n 2 Similarly, the SDP bound for the maximum k -partition is � � κ − s 1 min � i < j m i m j , 2 κ n . n

  17. SDP and GPP SRG SotirovR Theorem . Let G = ( V , E ) be a SRG with eigenvalues κ, r , s . Let m i ∈ N , i = 1 , . . . , k s.t. � k j =1 m j = n . Then the SDP bound for the minimum k -partition is � �� κ − r 1 � i m 2 max � i < j m i m j , n ( κ + 1) − � i n 2 Similarly, the SDP bound for the maximum k -partition is � � κ − s 1 min � i < j m i m j , 2 κ n . n this is an extension of the result for the equipartition: De Klerk, Pasechnik, S., Dobre: On SDP relaxations of maximum k-section, Math. Program. Ser. B , 136(2):253-278, 2012.

  18. SDP and GPP SRG SotirovR � n � after aggregating, 3 ∆ constraints remain: 3 z 1 ≤ 1 z 2 ≤ 1 2 z 1 − z 2 ≤ 1 − z 1 + 2 z 2 ≤ 1

  19. SDP and GPP SRG SotirovR � n � after aggregating, 3 ∆ constraints remain: 3 z 1 ≤ 1 z 2 ≤ 1 2 z 1 − z 2 ≤ 1 − z 1 + 2 z 2 ≤ 1 Prop . For SRG with n > 5 the ∆ ineq. are redundant in GPP m .

  20. SDP and GPP SRG SotirovR � n � after aggregating, 3 ∆ constraints remain: 3 z 1 ≤ 1 z 2 ≤ 1 2 z 1 − z 2 ≤ 1 − z 1 + 2 z 2 ≤ 1 Prop . For SRG with n > 5 the ∆ ineq. are redundant in GPP m . However, the independent set constraints improve GPP m .

  21. SDP and GPP Simplification – ’not a special’ graph . . . SotirovR

  22. SDP and GPP Simplification – ’not a special’ graph . . . SotirovR closed form expression for the GPP for ’any’ graph

  23. SDP and GPP Simplification – ’not a special’ graph . . . SotirovR closed form expression for the GPP for ’any’ graph L = Diag ( Au n ) − A . . . the Laplacian matrix of G

  24. SDP and GPP Simplification – ’not a special’ graph . . . SotirovR closed form expression for the GPP for ’any’ graph L = Diag ( Au n ) − A . . . the Laplacian matrix of G L := span { F 0 , . . . , F d } the Laplacian algebra corr. to L

  25. SDP and GPP Simplification – ’not a special’ graph . . . SotirovR closed form expression for the GPP for ’any’ graph L = Diag ( Au n ) − A . . . the Laplacian matrix of G L := span { F 0 , . . . , F d } the Laplacian algebra corr. to L F i = U i U T i , ∀ i . . . where U i corr. to the distinct eig. λ i � d i =0 F i = I F i F j = δ ij F i for i � = j tr ( F i ) = f i . . . the multiplicity of i -th eigenvalue of L

  26. SDP and GPP Simplification – ’not a special’ graph . . . SotirovR in GPP m : relax diag( Y ) = u n � tr( Y ) = n remove nonnegativity constraints

  27. SDP and GPP Simplification – ’not a special’ graph . . . SotirovR in GPP m : relax diag( Y ) = u n � tr( Y ) = n remove nonnegativity constraints 1 min 2 tr LY s . t . tr( Y ) = n (GPP eig ) k m 2 tr( JY ) = � i i =1 kY − J n � 0

  28. SDP and GPP Simplification – ’not a special’ graph . . . SotirovR in GPP m : relax diag( Y ) = u n � tr( Y ) = n remove nonnegativity constraints 1 min 2 tr LY s . t . tr( Y ) = n (GPP eig ) k m 2 tr( JY ) = � i i =1 kY − J n � 0 d Y = � z i F i , z i ∈ R ( i = 0 , . . . , d ) i =0

  29. SDP and GPP Simplification – ’not a special’ graph . . . SotirovR in GPP m : relax diag( Y ) = u n � tr( Y ) = n remove nonnegativity constraints 1 min 2 tr LY s . t . tr( Y ) = n (GPP eig ) k m 2 tr( JY ) = � i i =1 kY − J n � 0 d Y = � z i F i , z i ∈ R ( i = 0 , . . . , d ) i =0 d d d � � � tr( LY ) = tr( λ j F j ( z i F i )) = λ i f i z i j =0 i =0 i =0 where 0 = λ 0 ≤ . . . ≤ λ d distinct eigenvalues of L etc . . . .

  30. SDP and GPP Simplification – ’not a special’ graph . . . SotirovR Theorem Let G = ( V , E ) be a graph, m T = ( m 1 , . . . , m k ) s.t. � k j =1 m j = n . Then the GPP eig bound for the minimum k -partition of G equals λ 1 � m i m j , n i < j and the bound GPP eig for the maximum k -partition of G equals λ d � m i m j . n i < j

  31. SDP and GPP Simplification – ’not a special’ graph . . . SotirovR Theorem Let G = ( V , E ) be a graph, m T = ( m 1 , . . . , m k ) s.t. � k j =1 m j = n . Then the GPP eig bound for the minimum k -partition of G equals λ 1 � m i m j , n i < j and the bound GPP eig for the maximum k -partition of G equals λ d � m i m j . n i < j for the bisection the above results coincide with: M. Juvan, B. Mohar: Optimal linear labelings and eigenvalues of graphs. Discrete Appl. Math. , 36:153–168, 1992. for the min 3 -partition : J. Falkner, F. Rendl, H. Wolkowicz. A computational study of graph partitioning. Math. Program. , 66:211–239, 1994.

  32. SDP and GPP . SotirovR computational results . . .

  33. SDP and GPP Quality of the presented bounds SotirovR G n partition GPP eig GPP m Doob 64 8 112 160 design 90 9 360 360 grid graph 100 (50,25,25) 4 6 Higman-Sims 100 20 950 950 Table : Lower bounds for the min graph partition.

  34. SDP and GPP Quality of the presented bounds SotirovR G n partition GPP eig GPP m Doob 64 8 112 160 design 90 9 360 360 grid graph 100 (50,25,25) 4 6 Higman-Sims 100 20 950 950 Table : Lower bounds for the min graph partition. G n m GPP m GPP m − ∆ GPP m − ind J (7 , 2) 21 (11,10) 37 37 40 Foster 90 (45,45) 13 18 14 Biggs-Smith 102 (70,32) 10 15 10 Table : Lower bounds for the min bisection. each bound computed in a few seconds

  35. SDP and GPP . SotirovR vector lifting for the GPP . . .

  36. SDP and GPP Vector lifting for GPP SotirovR let m = ( m 1 , . . . , m k ) T , � i m i = n

  37. SDP and GPP Vector lifting for GPP SotirovR let m = ( m 1 , . . . , m k ) T , � i m i = n X ∈ R n × k : Xu k = u n , X T u n = m , x ij ∈ { 0 , 1 } � � X ∈ P k :=

  38. SDP and GPP Vector lifting for GPP SotirovR let m = ( m 1 , . . . , m k ) T , � i m i = n X ∈ R n × k : Xu k = u n , X T u n = m , x ij ∈ { 0 , 1 } � � X ∈ P k := define y := vec ( X ), Y := yy T � relax Y − yy T � 0

  39. SDP and GPP Vector lifting for GPP SotirovR let m = ( m 1 , . . . , m k ) T , � i m i = n X ∈ R n × k : Xu k = u n , X T u n = m , x ij ∈ { 0 , 1 } � � X ∈ P k := define y := vec ( X ), Y := yy T � relax Y − yy T � 0 1 min 2 tr (( J k − I k ) ⊗ A ) Y s . t . tr (( J k − I k ) ⊗ I n ) Y = 0 k � m 2 tr ( I k ⊗ J n ) Y + tr ( Y ) = − ( i + n ) (GPP v ) i =1 + 2 y T (( m + u k ) ⊗ u n ) � y T � 1 ∈ S + nk +1 , Y ≥ 0 y Y H. Wolkowicz and Q. Zhao. Semidefinite programming relaxations for the graph partitioning problem. Discrete Appl. Math. , 96–97:461–479, 1999. original Zhao-Wolkowicz relaxation does not include Y ≥ 0

  40. SDP and GPP Vector lifting for GPP SotirovR Theorem (S., 2012) When restricted to the equipartition, GPP v and GPP m are equivalent.

  41. SDP and GPP Vector lifting for GPP SotirovR Theorem (S., 2012) When restricted to the equipartition, GPP v and GPP m are equivalent. Theorem (S., 2013) When restricted to the bisection, GPP v dominates GPP m .

  42. SDP and GPP Vector lifting for GPP SotirovR Theorem (S., 2012) When restricted to the equipartition, GPP v and GPP m are equivalent. Theorem (S., 2013) When restricted to the bisection, GPP v dominates GPP m . numerical experiments show : gap between GPP v and GPP m reduces for k > 5

  43. SDP and GPP . SotirovR How to strengthen GPP v ?

  44. SDP and GPP . SotirovR How to strengthen GPP v ? We demonstrate for the bisection problem.

  45. SDP and GPP New bound for the bisection SotirovR ⇛ assign a pair of vertices of G to different parts of the partition

  46. SDP and GPP New bound for the bisection SotirovR ⇛ assign a pair of vertices of G to different parts of the partition Which pair of vertices?

  47. SDP and GPP New bound for the bisection SotirovR ⇛ assign a pair of vertices of G to different parts of the partition Which pair of vertices? consider the action of aut ( A ) on the pair of vertices ( i , j ) i.e., orbital: { ( Pe i , Pe j ) : P ∈ aut ( A ) }

  48. SDP and GPP New bound for the bisection SotirovR ⇛ assign a pair of vertices of G to different parts of the partition Which pair of vertices? consider the action of aut ( A ) on the pair of vertices ( i , j ) i.e., orbital: { ( Pe i , Pe j ) : P ∈ aut ( A ) } orbitals represent the ‘ different ’ kinds of pairs of vertices

  49. SDP and GPP New bound for the bisection SotirovR ⇛ assign a pair of vertices of G to different parts of the partition Which pair of vertices? consider the action of aut ( A ) on the pair of vertices ( i , j ) i.e., orbital: { ( Pe i , Pe j ) : P ∈ aut ( A ) } orbitals represent the ‘ different ’ kinds of pairs of vertices assume that there are t such orbitals: O h ( h = 1 , 2 , . . . , t ) ⇛ we prove the following

  50. SDP and GPP New bound for the bisection SotirovR Theorem. Let G be an undirected graph with adjacency matrix A , and t orbitals O h ( h = 1 , 2 , . . . , t ) of edges and nonedges.

  51. SDP and GPP New bound for the bisection SotirovR Theorem. Let G be an undirected graph with adjacency matrix A , and t orbitals O h ( h = 1 , 2 , . . . , t ) of edges and nonedges. Let ( r h 1 , r h 2 ) be an arbitrary pair of vertices in O h ( h = 1 , 2 , . . . , t ).

  52. SDP and GPP New bound for the bisection SotirovR Theorem. Let G be an undirected graph with adjacency matrix A , and t orbitals O h ( h = 1 , 2 , . . . , t ) of edges and nonedges. Let ( r h 1 , r h 2 ) be an arbitrary pair of vertices in O h ( h = 1 , 2 , . . . , t ). Then Z ∈P 2 tr Z T AZ ( J 2 − I 2 ) = X ∈P 2 ( h ) tr X T AX ( J 2 − I 2 ) , min min min h =1 , 2 ,..., t where P 2 ( h ) = { X ∈ P 2 : X r h 1 , 1 = 1 , X r h 2 , 2 = 1 } ( h = 1 , 2 , . . . , t ).

  53. SDP and GPP New bound for the bisection SotirovR Theorem. Let G be an undirected graph with adjacency matrix A , and t orbitals O h ( h = 1 , 2 , . . . , t ) of edges and nonedges. Let ( r h 1 , r h 2 ) be an arbitrary pair of vertices in O h ( h = 1 , 2 , . . . , t ). Then Z ∈P 2 tr Z T AZ ( J 2 − I 2 ) = X ∈P 2 ( h ) tr X T AX ( J 2 − I 2 ) , min min min h =1 , 2 ,..., t where P 2 ( h ) = { X ∈ P 2 : X r h 1 , 1 = 1 , X r h 2 , 2 = 1 } ( h = 1 , 2 , . . . , t ). ⇒ for each h , compute: µ ∗ h := { GPP v with two additional constraints }

  54. SDP and GPP New bound for the bisection SotirovR Theorem. Let G be an undirected graph with adjacency matrix A , and t orbitals O h ( h = 1 , 2 , . . . , t ) of edges and nonedges. Let ( r h 1 , r h 2 ) be an arbitrary pair of vertices in O h ( h = 1 , 2 , . . . , t ). Then Z ∈P 2 tr Z T AZ ( J 2 − I 2 ) = X ∈P 2 ( h ) tr X T AX ( J 2 − I 2 ) , min min min h =1 , 2 ,..., t where P 2 ( h ) = { X ∈ P 2 : X r h 1 , 1 = 1 , X r h 2 , 2 = 1 } ( h = 1 , 2 , . . . , t ). ⇒ for each h , compute: µ ∗ h := { GPP v with two additional constraints } ⇒ the new lower bound for the bisection problem is: h =1 ,..., t µ ∗ GPP fix := min h

  55. SDP and GPP . SotirovR computational results . . .

  56. SDP and GPP Comparison of bounds . . . SotirovR in general, it is difficult to solve GPP fix

  57. SDP and GPP Comparison of bounds . . . SotirovR in general, it is difficult to solve GPP fix but for graphs with symmetry . . . m T GPP m GPP v GPP m − ind GPP fix G n J (6 , 2) 15 (8,7) 23 23 26 24 56 (53,3) 23 24 23 26 Gewirtz 77 (74,3) 41 42 41 44 M 22 Higman-Sims 100 25-part. 960 960 960 964 Table : Lower bounds for the min GPP each bound computed with IPM in < 30 s

  58. �������� �������� SDP and GPP Example: the bandwidth problem SotirovR

  59. �������� �������� SDP and GPP Example: the bandwidth problem SotirovR The Bandwidth Problem in graphs: label the vertices v i of G with distinct integers φ ( v i ) s.t. ( v i , v j ) ∈ E | φ ( v i ) − φ ( v j ) | max minimal

  60. SDP and GPP Example: the bandwidth problem SotirovR The Bandwidth Problem in graphs: label the vertices v i of G with distinct integers φ ( v i ) s.t. ( v i , v j ) ∈ E | φ ( v i ) − φ ( v j ) | max minimal 2 3 8 1 �������� �������� 5 4 7 6

  61. SDP and GPP Example: the bandwidth problem SotirovR The Bandwidth Problem in graphs: label the vertices v i of G with distinct integers φ ( v i ) s.t. ( v i , v j ) ∈ E | φ ( v i ) − φ ( v j ) | max minimal 2 3 3 7 5 8 1 1 �������� �������� 5 4 2 6 7 6 4 8

  62. SDP and GPP Example: the bandwidth problem SotirovR The Bandwidth Problem in graphs: label the vertices v i of G with distinct integers φ ( v i ) s.t. ( v i , v j ) ∈ E | φ ( v i ) − φ ( v j ) | max minimal 2 3 3 7 5 8 1 1 �������� �������� 5 4 2 6 7 6 4 8 0 1 0 0 0 0 1 1 0 0 1 1 1 0 0 0     1 0 1 0 1 0 0 0 0 0 1 1 0 1 0 0     0 1 0 1 0 0 0 1 1 1 0 0 0 0 1 0         0 0 1 0 0 1 0 1 1 1 0 0 0 0 0 1         0 1 0 1 0 0 1 0 1 0 0 0 0 0 1 1         0 0 0 1 0 0 1 1 0 1 0 0 0 0 1 1         1 0 0 1 0 1 0 0 0 0 1 0 1 1 0 0     1 0 1 0 0 1 0 0 0 0 0 1 1 1 0 0

  63. SDP and GPP The bandwidth problem SotirovR ⇛ the bandwidth problem is related to the following GPP problem

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend