enclosures of roundoff errors using sdp
play

Enclosures of Roundoff Errors using SDP Victor Magron , CNRS Jointly - PowerPoint PPT Presentation

Enclosures of Roundoff Errors using SDP Victor Magron , CNRS Jointly Certified Upper Bounds with G. Constantinides and A. Donaldson 18th French-German-Italian Conference on Optimization September 2017 New Hierarchies of SDP Relaxations for


  1. Enclosures of Roundoff Errors using SDP Victor Magron , CNRS Jointly Certified Upper Bounds with G. Constantinides and A. Donaldson 18th French-German-Italian Conference on Optimization September 2017 New Hierarchies of SDP Relaxations for Polynomial Systems Victor Magron Enclosures of Roundoff Errors using SDP 0 / 18

  2. Errors and Proofs G UARANTEED O PTIMIZATION Input : Linear problem (LP), geometric, semidefinite (SDP) Output : solution + certificate numeric-symbolic ❀ formal Victor Magron Enclosures of Roundoff Errors using SDP 1 / 18

  3. Errors and Proofs G UARANTEED O PTIMIZATION Input : Linear problem (LP), geometric, semidefinite (SDP) Output : solution + certificate numeric-symbolic ❀ formal V ERIFICATION OF CRITICAL SYSTEMS Reliable software/hardware embedded codes Aerospace control molecular biology, robotics, code synthesis, . . . Victor Magron Enclosures of Roundoff Errors using SDP 1 / 18

  4. Errors and Proofs G UARANTEED O PTIMIZATION Input : Linear problem (LP), geometric, semidefinite (SDP) Output : solution + certificate numeric-symbolic ❀ formal V ERIFICATION OF CRITICAL SYSTEMS Reliable software/hardware embedded codes Aerospace control molecular biology, robotics, code synthesis, . . . Efficient Verification of Nonlinear Systems Automated precision tuning of systems/programs analysis/synthesis Efficiency sparsity correlation patterns Certified approximation algorithms Victor Magron Enclosures of Roundoff Errors using SDP 1 / 18

  5. Roundoff Error Bounds Real : f ( x ) : = x 1 × x 2 + x 3 Floating-point : ˆ f ( x , e ) : = [ x 1 x 2 ( 1 + e 1 ) + x 3 ]( 1 + e 2 ) Input variable constraints x ∈ X Finite precision ❀ bounds over e ∈ E : | e i | � 2 − 53 (double) Guarantees on absolute round-off error | ˆ f − f | ? ↓ Upper Bounds ↓ max ˆ max ˆ f − f f − f ↑ Lower Bounds ↑ ↓ Lower Bounds ↓ min ˆ min ˆ f − f f − f ↑ Upper Bounds ↑ Victor Magron Enclosures of Roundoff Errors using SDP 2 / 18

  6. Nonlinear Programs Polynomials programs : + , − , × x 2 x 5 + x 3 x 6 + x 1 ( − x 1 + x 2 + x 3 − x 4 + x 5 + x 6 ) Victor Magron Enclosures of Roundoff Errors using SDP 3 / 18

  7. Nonlinear Programs Polynomials programs : + , − , × x 2 x 5 + x 3 x 6 + x 1 ( − x 1 + x 2 + x 3 − x 4 + x 5 + x 6 ) Semialgebraic programs: | · | , √ , /, sup, inf 4 x x 1 + 1.11 Victor Magron Enclosures of Roundoff Errors using SDP 3 / 18

  8. Nonlinear Programs Polynomials programs : + , − , × x 2 x 5 + x 3 x 6 + x 1 ( − x 1 + x 2 + x 3 − x 4 + x 5 + x 6 ) Semialgebraic programs: | · | , √ , /, sup, inf 4 x x 1 + 1.11 Transcendental programs: arctan, exp, log, . . . log ( 1 + exp ( x )) Victor Magron Enclosures of Roundoff Errors using SDP 3 / 18

  9. Existing Frameworks Classical methods : Abstract domains [Goubault-Putot 11] F LUCTUAT : intervals, octagons, zonotopes Interval arithmetic [Daumas-Melquiond 10] G APPA : interface with C OQ proof assistant Victor Magron Enclosures of Roundoff Errors using SDP 4 / 18

  10. Existing Frameworks Recent progress : Affine arithmetic + SMT [Darulova 14], [Darulova 17] rosa : sound compiler for reals (S CALA ) Symbolic Taylor expansions [Solovyev 15], [Chiang 17] FPTaylor : certified optimization (OC AML /H OL - LIGHT ) Guided random testing s3fp [Chiang 14] Victor Magron Enclosures of Roundoff Errors using SDP 4 / 18

  11. Contributions Maximal Roundoff error of the program implementation of f : r ⋆ : = max | ˆ f ( x , e ) − f ( x ) | Decomposition: linear term l w.r.t. e + nonlinear term h max | l | + max | h | � r ⋆ � max | l | − max | h | Coarse bound of h with interval arithmetic Semidefinite programming (SDP) bounds for l : Victor Magron Enclosures of Roundoff Errors using SDP 5 / 18

  12. Contributions Maximal Roundoff error of the program implementation of f : r ⋆ : = max | ˆ f ( x , e ) − f ( x ) | Decomposition: linear term l w.r.t. e + nonlinear term h max | l | + max | h | � r ⋆ � max | l | − max | h | Coarse bound of h with interval arithmetic Semidefinite programming (SDP) bounds for l : ↓ Upper Bounds ↓ ↑ Lower Bounds ↑ ↓ Lower Bounds ↓ ↑ Upper Bounds ↑ Sparse SDP relaxations Robust SDP relaxations Victor Magron Enclosures of Roundoff Errors using SDP 5 / 18

  13. Contributions 1 General SDP framework for upper and lower bounds 2 Comparison with SMT & affine/Taylor arithmetic: ❀ Efficient optimization � Tight upper bounds + 3 Extensions to transcendental/conditional programs 4 Formal verification of SDP bounds 5 Open source tools: ↓ Upper Bounds ↓ Real2Float (in OC AML and C OQ ) ↑ Upper Bounds ↑ ↑ Lower Bounds ↑ ↓ Lower Bounds ↓ FPSDP (in M ATLAB ) Victor Magron Enclosures of Roundoff Errors using SDP 5 / 18

  14. Introduction Semidefinite Programming for Polynomial Optimization Upper Bounds with Sparse SDP Lower Bounds with Robust SDP Conclusion

  15. What is Semidefinite Programming? Linear Programming (LP): ⊤ z min c z s.t. A z � d . Linear cost c Polyhedron Linear inequalities “ ∑ i A ij z j � d i ” Victor Magron Enclosures of Roundoff Errors using SDP 6 / 18

  16. What is Semidefinite Programming? Semidefinite Programming (SDP): ⊤ z min c z ∑ s.t. F i z i � F 0 . i Linear cost c Symmetric matrices F 0 , F i Spectrahedron Linear matrix inequalities “ F � 0” ( F has nonnegative eigenvalues) Victor Magron Enclosures of Roundoff Errors using SDP 6 / 18

  17. What is Semidefinite Programming? Semidefinite Programming (SDP): ⊤ z min c z ∑ A z = d . s.t. F i z i � F 0 , i Linear cost c Symmetric matrices F 0 , F i Spectrahedron Linear matrix inequalities “ F � 0” ( F has nonnegative eigenvalues) Victor Magron Enclosures of Roundoff Errors using SDP 6 / 18

  18. SDP for Polynomial Optimization Prove polynomial inequalities with SDP: f ( a , b ) : = a 2 − 2 ab + b 2 � 0 . � � � � � � z 1 z 2 a Find z s.t. f ( a , b ) = a b . z 2 z 3 b � �� � � 0 Find z s.t. a 2 − 2 ab + b 2 = z 1 a 2 + 2 z 2 ab + z 3 b 2 ( A z = d ) � z 1 � � 1 � � 0 � � 0 � � 0 � z 2 0 1 0 0 = z 1 + z 2 + z 3 � z 2 z 3 0 0 1 0 0 1 0 0 � �� � � �� � � �� � � �� � F 1 F 2 F 3 F 0 Victor Magron Enclosures of Roundoff Errors using SDP 7 / 18

  19. SDP for Polynomial Optimization Choose a cost c e.g. ( 1, 0, 1 ) and solve: ⊤ z min c z ∑ s.t. F i z i � F 0 , A z = d . i � 1 � z 1 � � z 2 − 1 Solution = � 0 (eigenvalues 0 and 2) − 1 z 2 z 3 1 � � 1 � � a � − 1 a 2 − 2 ab + b 2 = � = ( a − b ) 2 . a b − 1 1 b � �� � � 0 Solving SDP = ⇒ Finding S UMS OF S QUARES certificates Victor Magron Enclosures of Roundoff Errors using SDP 8 / 18

  20. SDP for Polynomial Optimization NP hard General Problem : f ∗ : = min x ∈ X f ( x ) Semialgebraic set X : = { x ∈ R n : g 1 ( x ) � 0, . . . , g m ( x ) � 0 } Victor Magron Enclosures of Roundoff Errors using SDP 9 / 18

  21. SDP for Polynomial Optimization NP hard General Problem : f ∗ : = min x ∈ X f ( x ) Semialgebraic set X : = { x ∈ R n : g 1 ( x ) � 0, . . . , g m ( x ) � 0 } � : = [ 0, 1 ] 2 = { x ∈ R 2 : x 1 ( 1 − x 1 ) � 0, x 2 ( 1 − x 2 ) � 0 } Victor Magron Enclosures of Roundoff Errors using SDP 9 / 18

  22. SDP for Polynomial Optimization NP hard General Problem : f ∗ : = min x ∈ X f ( x ) Semialgebraic set X : = { x ∈ R n : g 1 ( x ) � 0, . . . , g m ( x ) � 0 } � : = [ 0, 1 ] 2 = { x ∈ R 2 : x 1 ( 1 − x 1 ) � 0, x 2 ( 1 − x 2 ) � 0 } σ 0 σ 1 σ 2 � �� � g 1 g 2 f ���� ���� � � 2 x 1 x 2 + 1 1 x 1 + x 2 − 1 1 � �� � 1 � �� � ���� 8 = + x 1 ( 1 − x 1 ) + x 2 ( 1 − x 2 ) 2 2 2 2 Victor Magron Enclosures of Roundoff Errors using SDP 9 / 18

  23. SDP for Polynomial Optimization NP hard General Problem : f ∗ : = min x ∈ X f ( x ) Semialgebraic set X : = { x ∈ R n : g 1 ( x ) � 0, . . . , g m ( x ) � 0 } � : = [ 0, 1 ] 2 = { x ∈ R 2 : x 1 ( 1 − x 1 ) � 0, x 2 ( 1 − x 2 ) � 0 } σ 0 σ 1 σ 2 � �� � g 1 g 2 f ���� ���� � � 2 x 1 x 2 + 1 1 x 1 + x 2 − 1 1 � �� � 1 � �� � ���� 8 = + x 1 ( 1 − x 1 ) + x 2 ( 1 − x 2 ) 2 2 2 2 Sums of squares (SOS) σ i Victor Magron Enclosures of Roundoff Errors using SDP 9 / 18

  24. SDP for Polynomial Optimization NP hard General Problem : f ∗ : = min x ∈ X f ( x ) Semialgebraic set X : = { x ∈ R n : g 1 ( x ) � 0, . . . , g m ( x ) � 0 } � : = [ 0, 1 ] 2 = { x ∈ R 2 : x 1 ( 1 − x 1 ) � 0, x 2 ( 1 − x 2 ) � 0 } σ 0 σ 1 σ 2 � �� � g 1 g 2 f ���� ���� � � 2 x 1 x 2 + 1 1 x 1 + x 2 − 1 1 � �� � 1 � �� � ���� 8 = + x 1 ( 1 − x 1 ) + x 2 ( 1 − x 2 ) 2 2 2 2 Sums of squares (SOS) σ i Bounded degree: � � σ 0 + ∑ m Q k ( X ) : = j = 1 σ j g j , with deg σ j g j � 2 k Victor Magron Enclosures of Roundoff Errors using SDP 9 / 18

  25. SDP for Polynomial Optimization Hierarchy of SDP relaxations : � � λ k : = sup λ : f − λ ∈ Q k ( X ) λ Convergence guarantees λ k ↑ f ∗ [Lasserre 01] Can be computed with SDP solvers ( CSDP , SDPA ) “No Free Lunch” Rule : ( n + 2 k n ) SDP variables Victor Magron Enclosures of Roundoff Errors using SDP 10 / 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend