schwinger effect and hawking radiation in charged black
play

Schwinger Effect and Hawking Radiation in Charged Black Holes* Sang - PowerPoint PPT Presentation

Schwinger Effect and Hawking Radiation in Charged Black Holes* Sang Pyo Kim Kunsan National University HTGRG-2, Quy Nhon, Vietnam August 10-15, 2015 *Similar talks at ICGC&4 th GX, 12th ICGAC, 14 th IK 1/3 rd new material Outline


  1. Schwinger Effect and Hawking Radiation in Charged Black Holes* Sang Pyo Kim Kunsan National University HTGRG-2, Quy Nhon, Vietnam August 10-15, 2015 *Similar talks at ICGC&4 th GX, 12th ICGAC, 14 th IK 1/3 rd new material

  2. Outline • Introduction • Effective Actions in In-Out Formalism • Road to QED in Charged Black Holes • Schwinger Effect in Near-Extremal BHs • Extremal Micro-BH, Extremal BH Entropy and Evolution • Conclusion

  3. Spontaneous Pair Production and Vacuum Polarization

  4. Hawking Radiation & Schwinger Effect • Hawking emission • Schwinger emission formula in charged BH formula in E-field [PR [CMP (‘74)] (‘51)] −  Γ m   = ω = j lm exp N   N ω − Φ S H q   T j S T  1 e H   1 qE =   − T 2 2 1 M Q π S   = 2 ( ) m T π H 2 2 + − 2 2 M M Q • Heisenberg-Euler, Weisskopf, Schwinger • No Hawking radiation QED actions when Q = M

  5. One-Loop Effective Actions: Black Hole vs QED [SPK, Hwang (‘11)] Notation QED in E Schwarzsch ild BH κ 1 ( / ) qE m = k T β B π π 2 2 ω 2 1 k ∑ ∫ ∑ d m ∑ ∫ d ∫ ⊥ # of States β π β π σ 2 , , J l m p 2 ( 2 ) 2 k m ⊥ − β + ∑ ∫ ∑ ∫ ( ) − βω ± ±   2 2 Vac. Persistenc e ( ) ln( 1 ) ( ) ln( 1 m ) e e J J s s {cos( )} [cos( )] 2 s k m s ⊥ 1 − βω − β + ∞ ds ds ∑ ∫ ∑ ∫ ( ) ∫ 2 2 ± π π  Vac. Polarizati on ( ) 2 ( ) 2 2 2 m e e s s 2 J J 0 s s sin( ) sin( ) 2 2

  6. Schwinger Effect in Charged Black Holes Zaumen, Nature (‘74) Carter, PRL (‘74) Gibbons, CMP (‘75) Damour, Ruffini (‘76) ⋮ Khriplovich (‘99) Gabriel (‘01) SPK, Page (‘04), (‘05), (‘08) Ruffini, Vereshchagin, Xue (‘10) Chen et al (‘12); Kerr-Newman BH, in preparation (‘15) Ruffini, Wu, Xue (‘13) SPK (‘13) Cai, SPK (‘14) SPK, Lee, Yoon (‘15); SPK (‘15) Cai, SPK, in preparation (‘15)

  7. Spontaneous Emission of Bosons from Supercritical Point Charges • Mean number of charged bosons produced from supercritical point charges [SPK (‘13)] − π + 4 C 1 e = − π λ − 2 ( ) C N e − π λ − + C 2 ( ) C 1 e 2  + α  1 / 2 l Z = α − λ =   1 , C Z ( ) α   − ω Z 2 1 / m • Vacuum persistence (twice of the imaginary action) ( ) ( ) − π λ − − π λ + = + − + 2 ( ) 2 ( ) C C ln 1 ln 1 W e e               leading Schwinger formula charged vacuum

  8. Boson Emission from Extremal RN BH • Including only the leading terms (effective charge and angular momentum) for the KG equation in an RN BH 2 m M = + ' Q Q ω q 2    +  2 2 1 1 m M m M   + = + +   ' 2 l l qQ   ω ω   2 2   • Mean number is the same as that for the Coulomb field ( 𝐷 ′ = 𝐷 invariant), and that for extremal RN black hole.

  9. Effective Actions in In-Out Formalism

  10. In-Out Formalism for QED Actions • In the in-out formalism, the vacuum persistence amplitude gives the effective action [Schwinger (‘51); DeWitt (‘75), (‘03)] and is equivalent to the Feynman integral 1 / 2 ∫ − D i ( g ) d xL iW = = e e 0, out | 0, in = eff • The complex effective action and the vacuum persistence for particle production 2 − = = ± ± ∑ 2 Im W 0, out | 0, in , 2 Im ln( 1 ) e W VT N k k

  11. Effective Actions at T=0 & T • Zero-temperature effective actions in proper-time integral via the gamma-function regularization [SPK, Lee, Yoon (‘08), (‘10); SPK (‘11)]; the gamma-function & zeta-function regularization [SPK, Lee (‘14)]; quantum kinematic approach [Bastianelli, SPK, Schubert, in preparation (‘15)] ( ) ∑ ∑ ∑ = ± α = ± Γ + * ln ln ( k ) W i i a ib k l l k k l • finite-temperature effective action [SPK, Lee, Yoon (‘09), (‘10)] [ ] + ρ Tr ( ) U ∫ + = β β = 3 in exp 0, , in 0, , in i d xdtL U ρ eff Tr ( ) in

  12. Road to QED in Charged BHs

  13. Why Schwinger Effect in (A)dS 2 ? Near-Horizon Geometry of RN BHs Near- AdS 2 × S 2 extremal BH RN Black Holes Nonextremal Rindler 2 × S 2 BH Rotating S-scalar QED in dS 2 BH in dS wave

  14. Schwinger Effect in (A)dS [Cai, SPK (‘14)] Schwinger QED Mechanism/ Unruh Effect Vacuum Fluctuations Gibbons- de Sitter Hawking Radiation

  15. Effective Temperature for Unruh Effect in (A)dS [Narnhofer, Peter, Thirring (‘96); Deser, Levin (‘97)] Unruh T U = a/2 π Effect Effective Temperature R = 2H 2 (A)dS or -2K 2 R = + 2 T T 8 π eff U 2

  16. Schwinger formula in (A)dS • (A)dS metric and the gauge potential for E = − + = − − 2 2 2 2 Ht Ht , ( / )( 1 ) ds dt e dx A E H e 1 = − + = − − 2 2 2 2 Kx Kx , ( / )( 1 ) ds e dt dx A E K e 0 • Schwinger formula for scalars in dS 2 [Garriga (‘94); SPK, Page (‘08)] and in AdS 2 [Pioline, Troost (‘05); SPK, Page (‘08)]    2 π   2 2 qE H qE    = + − −   2 S m  dS     4 H H H    − = S  N e    π 2   2 2 qE qE K   = − − −   2  S m AdS     4 K K K    

  17. Effective Temperature for Schwinger formula • Effective temperature for accelerating observer in (A)dS [Narnhofer, Peter, Thirring (‘96); Deser, Levin (‘97)] R − = = + = − / 2 2 2 m T , , 2 ( 2 ) N e T T R H K eff π eff U 2 8 • Effective temperature for Schwinger formula in (A)dS [Cai, SPK (‘14)] R qE H − = = − = = / 2 m T , , , N e m m T T eff π U GH 8 2 m R = + + = + + 2 2 2 ; T T T T T T T π dS U GH U AdS U U 2 8

  18. Scalar QED Action in dS 2 • Pair production and vacuum polarization from the in-out formalism [Cai, SPK (‘14)] − − − ( ) + 2 S S S µ λ µ e e ( ) = = + ( 1 ) , 2 Im ln 1 N W N − dS dS dS − 2 S µ 1 e    Schwinger subtractio n         2   H S 1 2 ∞ ds s   ∫ − − π µ = − +  ( ) / 2 S S s   (1) µ λ L P e ( )   dS π 2    sin( / 2 ) 12 4 2 0 s s s            cos( / 2 ) 2 s s − π −  − −  / S s   µ  e      sin( / 2 ) 6  s s  2 2     1 qE m qE = π + − = π     2 , 2 S S µ λ  2    2 4 H H H

  19. Scalar QED Action in AdS 2 • Pair production and vacuum polarization − − − + − ( ) ( ) S S S S κ ν κ ν e e ( ) = = + ( 1 ) , 2 Im ln 1 N W N − + + AdS AdS AdS ( ) S S 1 κ ν e   2 1 2 ∞ K S ds s ∫ − π = − π − − ν / 2 (1) S s cosh( / 2 ) κ   L P e S s ( ) ν AdS π 2   sin( / 2 ) 12 4 2 0 s s s 2 2     1 qE m qE = π − − = π     2 , 2 S S ν κ  2    2 4 K K K

  20. Spinor QED Action in dS 2 • Pair production and vacuum polarization [SPK (‘15)] − − − − ( ) 2 ( ) S S S µ λ µ e e = = − − sp ( 1 ) sp , 2 Im ln 1 N W N − ds dS ds − 2 S µ 1 e ( ) 2   H S 2 ∞ ds s s ∫ − − π − π µ = − − − + ( ) / 2 / S S s S s   sp µ λ µ cot( ) L P e e ( ) dS π 2   2 6 2 2 0 s s 2 2     qE m qE π + = π =     2 , 2 S S µ λ  2    2 H H H

  21. Spinor QED Action in AdS 2 • Pair production and vacuum polarization [SPK (‘15)] − − − + − ( ) ( ) ( ) S S S S κ ν κ ν e e = = − − sp sp sp , 2 Im ln 1 N W N − + AdS − AdS AdS ( ) S S 1 κ ν e ( )   2 2 K S ∞ ds s s ∫ − − π − + π = − − − + ν   sp ( ) / 2 ( ) / 2 S S s S S s κ ν κ ν cot( ) L P e e ( ) AdS π 2   2 6 2 2 0 s s 2 2     qE m qE = π − = π     2 , 2 S S ν κ  2    2 K K K

  22. Bosonic or Fermionic Current in (A)dS 2 • Current in 2 nd quantized field theory (in curved spacetime) = (2 charge: 2q) × (density of states along E: D/H) × (mean number: N) ( )  σ +  2 1 HS   µ = ( 2 ) J q N   ( ) dS dS π 2  4 2  ( )  σ +  2 1 KS   ν = ( 2 ) J q N   ( ) AdS AdS π 2  4 2  • Consistent with the current from Frob et al (‘14); Stahl, Strobel (‘15); Stahl, Strobel, Xue (‘15) in D = 2. • Magnetogenesis and IR hyperconductivity [Frob et al (‘14)].

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend