scet approach to power enhanced qed
play

SCET approach to power-enhanced QED correction in B s + (M. - PowerPoint PPT Presentation

SCET approach to power-enhanced QED correction in B s + (M. Beneke, C. Bobeth, R. Szafron, Phys. Rev. Lett. 120, 011801) Robert Szafron Technische Universit at M unchen SCET Workshop 19-22 March 2018 Amsterdam Robert


  1. SCET approach to power-enhanced QED correction in B s → µ + µ − (M. Beneke, C. Bobeth, R. Szafron, Phys. Rev. Lett. 120, 011801) Robert Szafron Technische Universit¨ at M¨ unchen SCET Workshop 19-22 March 2018 Amsterdam Robert Szafron 1/18

  2. Outline ◮ Motivation for precision flavor physics ◮ Power-enhanced correction ◮ SCET approach ◮ Numerical results ◮ Conclusions Robert Szafron 1/18

  3. Why do we need to know the QED corrections in flavour physics? m 2 b / m 2 ◮ Large logarithmic ln � � enhancements can mimic ℓ lepton-flavor universality violation ◮ Soft photon approximation employed so far is not suitable for virtual photons that can resolve the B-meson. ◮ Factorization theorems do not yet exist for QED ◮ Expected precision of measurements may require the inclusion of QED corrections or at least a proof that no effects above 1% exist Our starting point B s → µ + µ − Robert Szafron 1/18

  4. B s → µ + µ − In the SM the process is ◮ loop suppressed (FCNC) Robert Szafron 2/18

  5. B s → µ + µ − In the SM the process is ◮ loop suppressed (FCNC) ◮ helicity suppressed (scalar meson decaying into energetic muons, vector interaction), A ∼ m µ Robert Szafron 2/18

  6. B s → µ + µ − In the SM the process is ◮ loop suppressed (FCNC) ◮ helicity suppressed (scalar meson decaying into energetic muons, vector interaction), A ∼ m µ ◮ purely leptonic final state allows for a precise SM prediction, QCD contained in the meson decay constant f B s Highly suppressed in SM and can be computed with a good precision! Robert Szafron 2/18

  7. Theory Status Weak EFT (at the scale m b ) matching coefficients ◮ NLO EW [C. Bobeth, M. Gorbahn, E. Stamou, 2014] ◮ NNLO QCD [T. Hermann, M. Misiak, M. Steinhauser, 2013] B ( B s → µ + µ − ) TH = (3 . 65 ± 0 . 23) · 10 − 9 [C. Bobeth, M. Gorbahn, T. Hermann, M. Misiak, E. Stamou, M. Steinhauser, Phys.Rev.Lett. 112, 101801, 2014] Robert Szafron 3/18

  8. Theory Status Weak EFT (at the scale m b ) matching coefficients ◮ NLO EW [C. Bobeth, M. Gorbahn, E. Stamou, 2014] ◮ NNLO QCD [T. Hermann, M. Misiak, M. Steinhauser, 2013] B ( B s → µ + µ − ) TH = (3 . 65 ± 0 . 23) · 10 − 9 [C. Bobeth, M. Gorbahn, T. Hermann, M. Misiak, E. Stamou, M. Steinhauser, Phys.Rev.Lett. 112, 101801, 2014] ◮ QED corrections below the m b scale not included Robert Szafron 3/18

  9. Theory Status Weak EFT (at the scale m b ) matching coefficients ◮ NLO EW [C. Bobeth, M. Gorbahn, E. Stamou, 2014] ◮ NNLO QCD [T. Hermann, M. Misiak, M. Steinhauser, 2013] B ( B s → µ + µ − ) TH = (3 . 65 ± 0 . 23) · 10 − 9 [C. Bobeth, M. Gorbahn, T. Hermann, M. Misiak, E. Stamou, M. Steinhauser, Phys.Rev.Lett. 112, 101801, 2014] ◮ QED corrections below the m b scale not included Real radiation - only ultra-soft photons are important ◮ ISR is small [Y. Aditya, K.Healey, A. Petrov, Phys.Rev. D87 (2013) 074028 ] ◮ FSR - included in the experimental analysis [A. J. Buras, J. Girrbach, D. Guadagnoli, G. Isidori, Eur.Phys.J. C72 (2012) 2172] Robert Szafron 3/18

  10. QED corrections in QCD bound-states The final state has no strong interaction – QCD is contained in the decay constant q (0) γ µ γ 5 b (0) | ¯ B q ( p ) � = if B q p µ � 0 | ¯ This is no longer true when QED effects are included – non-local time ordered products have to be evaluated � d 4 x e iqx T { j QED ( x ) , L ∆ B =1 (0) }| ¯ � 0 | B q � This can be done for QED bound-states but QCD is non-perturbative at low scales Robert Szafron 4/18

  11. Scales in the problem Leptonic decay of B s is a SM multi-scale problem ◮ Electroweak scale m W m 2 W → ∞ ◮ Hard scale m b ◮ Hard-collinear scale Weak EFT � m b Λ QCD ◮ Soft scale Λ QCD m 2 b → ∞ ◮ Collinear scale m µ We take Λ QCD ∼ m µ so the soft SCET I ⊗ HQEFT scale of HQEFT is also a soft scale of SCET I m b Λ QCD → ∞ SCET II ⊕ HQEFT Robert Szafron 5/18

  12. Diagrams in the Weak EFT Power-enhanced ¯ ¯ ¯ ¯ b ℓ b ℓ b ℓ b ℓ s ℓ s ℓ s ℓ s ℓ Not power-enhanced ¯ ¯ ¯ ¯ b ℓ b ℓ b ℓ b ℓ s ℓ s ℓ s ℓ s ℓ ¯ ¯ ¯ b ℓ b ℓ b ℓ s ℓ s ℓ s ℓ e, µ, τ Robert Szafron 6/18

  13. The correction at the amplitude level C 7 C i ¯ γ b ℓ ¯ ¯ b ℓ b ℓ q ′ C 9 , 10 γ q ¯ ℓ q ¯ q ¯ ℓ ℓ γ γ q ¯ ℓ q ¯ q ¯ ℓ ℓ γ ℓγ 5 ℓ + α em m ℓ f B q N C 10 ¯ 4 π Q ℓ Q q m ℓ m B f B q N ¯ i A = ℓ (1 + γ 5 ) ℓ � � ln m b ω u � � 1 � ∞ 9 ( um 2 d ω × 0 du (1 − u ) C eff b ) ω φ B + ( ω ) + ln m 2 0 1 − u ℓ � � + 2 π 2 � − 2 ln m b ω � ∞ ln 2 m b ω − Q ℓ C eff d ω ω φ B + ( ω ) 7 0 m 2 m 2 3 ℓ ℓ Robert Szafron 7/18

  14. The correction at the amplitude level C 7 C i ¯ γ b ℓ ¯ ¯ b ℓ b ℓ q ′ C 9 , 10 γ q ¯ ℓ q ¯ q ¯ ℓ ℓ γ γ q ¯ ℓ q ¯ q ¯ ℓ ℓ γ ℓγ 5 ℓ + α em m ℓ f B q N C 10 ¯ 4 π Q ℓ Q q m ℓ m B f B q N ¯ i A = ℓ (1 + γ 5 ) ℓ � � ln m b ω u � � 1 � ∞ 9 ( um 2 d ω × 0 du (1 − u ) C eff b ) ω φ B + ( ω ) + ln m 2 0 1 − u ℓ � � + 2 π 2 � − 2 ln m b ω � ∞ ln 2 m b ω − Q ℓ C eff d ω ω φ B + ( ω ) 7 0 m 2 m 2 3 ℓ ℓ ◮ Tree level amplitude Robert Szafron 7/18

  15. The correction at the amplitude level C 7 C i ¯ γ b ℓ ¯ ¯ b ℓ b ℓ q ′ C 9 , 10 γ q ¯ ℓ q ¯ q ¯ ℓ ℓ γ γ q ¯ ℓ q ¯ q ¯ ℓ ℓ γ ℓγ 5 ℓ + α em m ℓ f B q N C 10 ¯ 4 π Q ℓ Q q m ℓ m B f B q N ¯ i A = ℓ (1 + γ 5 ) ℓ � � ln m b ω u � � 1 � ∞ 9 ( um 2 d ω × 0 du (1 − u ) C eff b ) ω φ B + ( ω ) + ln m 2 0 1 − u ℓ � � + 2 π 2 � − 2 ln m b ω � ∞ ln 2 m b ω − Q ℓ C eff d ω ω φ B + ( ω ) 7 0 m 2 m 2 3 ℓ ℓ ◮ Helicity suppression × power enhancement factor Robert Szafron 7/18

  16. The correction at the amplitude level C 7 C i ¯ γ b ℓ ¯ ¯ b ℓ b ℓ q ′ C 9 , 10 γ q ¯ ℓ q ¯ q ¯ ℓ ℓ γ γ q ¯ ℓ q ¯ q ¯ ℓ ℓ γ ℓγ 5 ℓ + α em m ℓ f B q N C 10 ¯ 4 π Q ℓ Q q m ℓ m B f B q N ¯ i A = ℓ (1 + γ 5 ) ℓ � � ln m b ω u � � 1 � ∞ 9 ( um 2 d ω × 0 du (1 − u ) C eff b ) ω φ B + ( ω ) + ln m 2 0 1 − u ℓ � � + 2 π 2 � − 2 ln m b ω � ∞ ln 2 m b ω − Q ℓ C eff d ω ω φ B + ( ω ) 7 0 m 2 m 2 3 ℓ ℓ ◮ Convolution with the light-cone distribution function Robert Szafron 7/18

  17. The correction at the amplitude level C 7 C i ¯ γ b ℓ ¯ ¯ b ℓ b ℓ q ′ C 9 , 10 γ q ¯ ℓ q ¯ q ¯ ℓ ℓ γ γ q ¯ ℓ q ¯ q ¯ ℓ ℓ γ ℓγ 5 ℓ + α em m ℓ f B q N C 10 ¯ 4 π Q ℓ Q q m ℓ m B f B q N ¯ i A = ℓ (1 + γ 5 ) ℓ � � ln m b ω u � � 1 � ∞ 9 ( um 2 d ω × 0 du (1 − u ) C eff b ) ω φ B + ( ω ) + ln m 2 0 1 − u ℓ � � + 2 π 2 � − 2 ln m b ω � ∞ ln 2 m b ω − Q ℓ C eff d ω ω φ B + ( ω ) 7 0 m 2 m 2 3 ℓ ℓ ◮ Double logarithmic enhancement due to endpoint singularity Robert Szafron 7/18

  18. Helicity suppression Can the helicity suppression be relaxed? ¯ ¯ ℓ ℓ b b ℓγ µ γ 5 ℓ → m ℓ ¯ Λ QCD ¯ m ℓ ¯ ¯ ℓ c γ 5 ℓ ¯ ℓγ µ γ ν ℓ → ℓ c γ 5 ℓ ¯ B s B s c c m b q ¯ q ¯ ℓ ℓ Without QED: � � m ℓ u ( p ℓ ) = u c ( p ℓ ) + O E ℓ For m ℓ → 0 the amplitude has to vanish 1 Annihilation and helicity flip take place at the same point r � m b Robert Szafron 8/18

  19. Helicity suppression Can the helicity suppression be relaxed? ¯ ¯ ℓ ℓ b b ℓγ µ γ 5 ℓ → m ℓ ¯ Λ QCD ¯ m ℓ ¯ ¯ ℓ c γ 5 ℓ ¯ ℓγ µ γ ν ℓ → ℓ c γ 5 ℓ ¯ B s B s c c m b q ¯ q ¯ ℓ ℓ With QED: 1 √ Annihilation and helicity flip can be separated by r ∼ m b Λ QCD It is still a short distance effect since the size of the meson is 1 r ∼ Λ QCD For m ℓ → 0 the amplitude still vanishes Robert Szafron 8/18

  20. Operators at the hard scale α em q γ µ P L b )(¯ Q 9 = 4 π (¯ ℓγ µ ℓ ) α em q γ µ P L b �� ¯ � � = ¯ ℓγ µ γ 5 ℓ Q 10 4 π e q σ µν P R b � � Q 7 = 16 π 2 m b ¯ F µν Four-quark operators can be treated as a modification of C 9 and C 7 9 ( q 2 ) C eff C eff 7 Robert Szafron 9/18

  21. C 9 contribution Typical SCET I → SCET II problem but with m ℓ � = 0 � � � C i ( µ b ) O i → du H i ( u ) J i ( u ) , i i Weak operators are matched on B-type SCET I currents � �� � χ C ( n + s ) γ µ ℓ C ( n + t ) γ ⊥ J 9 ( s , t ) = ⊥ P L h ν (0) µ ℓ C (0) � dr J X ( u ) = n + p ℓ 2 π exp [ − iun + p ℓ r ] J X (0 , r ) H 9 ( u ) = C eff 9 ( u ) + O ( α em ) Robert Szafron 10/18

  22. SCET I diagrams ◮ We need L (1) ξ q to convert the hc-quark into a soft quark ◮ For pure hc-interaction, mass is power suppressed ⊥ ∼ λ , L (1) m ℓ ∼ λ 2 , p hc hc , m ◮ For pure c-interaction, mass is included in the leading power Lagrangian, m ℓ ∼ λ 2 ∼ p c ⊥ , L (0) c , m Robert Szafron 11/18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend